What’s new in our Optical Modeling and Design Software?
Propagation through Microlens Arrays
With the advent of modern technologies specialized optical components like microlens arrays (MLAs) get more and more attention. Especially in the field of optical projection systems, material processing units and optical diffusers microlens arrays have seen common usage. In VirtualLab Fusion such systems can be set up and simulated using a new MLA component introduced in the latest release, allowing a thorough investigation of the transmitted field in the near field behind the microlens component as well as in the far field and focal region.
Read moreSimulation of VCSELs & VCSEL Arrays
Vertical cavity surface emitting lasers (VCSEL) constitute an ascending technology that is known for its reliability and wavelength stability, as well for good quality in terms of the emitting beam. For that reason, they are commonly used in various applications involving e.g. beam splitters and pattern generators.
In VirtualLab Fusion the newly introduced Multiple Light Source allows for the definition of individual VCSELs and whole VCSEL arrays.
Read moreSimulating Complex Sources using Multiple Source Modes
In the areas of illumination and imaging the simulation of complex source models like light source arrays or extended sources is necessary for many different applications.
We therefore want to demonstrate a new feature from the latest VirtualLab Fusion release (2021.1) which enables the configuration of such kind of sources through the definition and combination of different source modes. The modes can be configured as coherent or incoherent to each other to allow for the modeling of either fully coherent, fully incoherent or partially coherent sources.
Read moreBirefringence Effects on Curved Surfaces
In order to provide additional design freedom in terms of polarization control and multiplexing, in many applications anisotropic layers are attached to the surfaces of optical components.
As the birefringence effect depends strongly on the orientation of the crystal axis with respect to the direction of the incoming light, the discussion of such kind of components is especially interesting when the coating is applied to a curved surface.
Read morePolarization Effects in Anisotropic Components
Birefringence and other polarization effects are a major part of any simulation of anisotropic optical components, which feature prominently in many applications, the fabrication of liquid crystal displays among them.
VirtualLab Fusion gives you the option to include anisotropic media in your system, in the form of coating layers or in different components, like the Stratified Media component or the Crystal Plate. This allows for a complete simulation of single and multi-layer polarizers as demonstrated in the examples below.
Anisotropic Media for Coatings & Components
Anisotropic media, and crystals in particular, have long been linchpin components for various applications, including lasers and display technologies.
A HIGHLIGHT OF THE LATEST RELEASE, 2021.1
For the design, simulation and optimization of such kind of optical setups, VirtualLab Fusion provides a fast and rigorous electromagnetic field solver
that models the propagation of the electromagnetic field through anisotropic media, including polarization effects like conical refraction and birefringence.
Propagation through Multimode Fibers
Multimode fibers are an integral part of most optical communication technologies. For a sound modeling of such structures, accurate propagation of the fiber modes and their interference is necessary. In VirtualLab Fusion it is possible to use Bessel and Laguerre Polynomials to describe the fiber modes, for single-core fibers as well as graded-index ones. The resulting modes can then also be propagated while considering additional effects like e.g. atmospheric turbulence.
Read moreNew Technologies in VirtualLab Fusion
The new version 2021.1 provides our users with solutions for more applications. Also we come with a new workflow which enables a seamless transition from ray to full
physical-optics modeling. This way we simplify the usage of the amazing modeling features in VirtualLab Fusion.