LightTrans

VirtualLab Fusion

Discover a unique optical design software with ray tracing tools and fast physical optics modeling.

Learning

Free Trial Version

Newsletter

Meet us at Photonics West

German Pavilion A #4429-15

The world’s premier lasers, biomedical optics, and optoelectronics event

 

Read more

Optical Engineering

Building your ideas was never easier with our broad range of tools and products.

Request

About LightTrans

Find out more about us!

Since 1999 our products and services shorten or even enable development cycles of innovative optical components and systems. All activities are based on the fast physical optics software VirtualLab Fusion, which provides a platform for connecting inbuilt and customized electromagnetic field solvers. This approach enables fast physical optics with ray tracing embedded in a well-defined way.

Upcoming Events

all upcoming news and events

Online Training

Modeling Anisotropy and Crystals in VirtualLab Fusion

07 – 08 December 2021
08:30 – 12:00 (CET)

Offer Requests are no longer possible.
If you are interested in further training options, please contant sales (at) lighttrans.com

Read more

Our experts answer customer's questions regarding our VirtualLab Fusion software.

Exhibition

SPIE Photonics West 2022

Conference: 22 – 27 January 2022
Exhibition: 25 – 27 January 2022
Moscone Centre, San Francisco, USA
Hall F, German Pavilion A #4429-15
Add to my calendar

Read more

Online Training

Getting Started with VirtualLab Fusion – 02/2022

08 – 09 February 2022
08:30 – 12:00 (CET)
Request an Offer

Read more

Our experts answer customer's questions regarding our VirtualLab Fusion software.

Exhibition

LASER World of PHOTONICS 2022

26 – 29 April 2022
Munich Trade Fair, Munich, Germany
Hall B6 #217
Add to my calendar

Read more

„VirtualLab Fusion offers excellent opportunities in research projects and is perfect for use in teaching, especially since there are many documented application examples available.“

Prof. Dr. Stefan Kontermann, Hochschule RheinMain

Nowadays ray tracing is not sufficient anymore. For a detailed analysis physical optics is required. VirtualLab Fusion is optimized for wave-optical simulations. The results we achieved are excellent. We can highly recommend VirtualLab Fusion. Not only the software is great, but also the support of the whole LightTrans team.

Dr. Benjamin Heck, Raylase GmbH

Excellent program, amazing capabilities, and very user-friendly interface.

Galina Machaviariani, Apple

VirtualLab Fusion is a very promising software that is helping in solving some peculiar diffraction issues that have been causing headaches to the community.

Federico Landini, INAF – Osservatorio Astrofisico di Arcetri

This is one of the most elaborate pieces of software I’ve ever had the pleasure of working with. My workflow now is not only faster and more pleasant, but also very well documented with little to no effort on that point.

Dr. Fabian Patrovsky, CDA GmbH

What's new?

all news

Performance Investigation of Lightguide Systems

[December 03, 2021]
We demonstrate two examples centered around the performance evaluation of lightguides: an NED (“near to exe”) device with 2D pupil expansion and a human eye model in order to calculate the MTF & PSF, and another one on characterization of the lateral uniformity.
[December 03, 2021]

The design process of any optical system must include an investigation of the performance of the system as a crucial step. Of course, this includes lightguide devices for applications in the field of augmented and mixed reality (AR/MR), as relatively complex representatives of optical systems. Depending on the application, “performance” can be defined by different merit functions. VirtualLab Fusion provides the optical engineer with a set of helpful tools and detectors to investigate the properties of the system.

Below we demonstrate two examples centered around the performance evaluation of lightguides: an NED (“near to exe”) device with 2D pupil expansion and a human eye model in order to calculate the MTF & PSF, and another one on characterization of the lateral uniformity.

Read more

Footprint and Grating Analysis

[November 30, 2021]
This time, we want to highlight the Grating Order Analyzer, which uses the rigorous Fourier Modal Method/Rigorous Coupled Wave Analysis (FMM/RCWA) for grating characterization and illustrate its application in the case of a slanted grating for lightguide incoupling.
[November 30, 2021]

The Light Guide Toolbox of the fast physical optics software VirtualLab Fusion provides a series of tools to help the optical engineer with many of the different stages involved in the design of lightguide devices for augmented and mixed reality applications. In our recent newsletters we already covered some of the features that assist, for instance, in the determination of a sufficient layout for the lightguide and its grating regions.

Today we turn to one of the most powerful systematic design tools for gratings in lightguides: the Footprint and Grating Analysis tool. Among its many functions, which are not limited to any particular layout, it can help, for example, to visualize the interactions of the beam footprints with the grating regions for the different field-of-view modes – an important study, considering the complex propagation of light inside the lightguide. But the jewel in its crown is its capacity to perform an analysis of the grating behavior that can then be used to configure a smooth variation of the grating parameters inside a single grating region, with the aim of improving the performance of the device in terms of its uniformity and efficiency.

Learn more about it with the use cases below!

Read more

Grating Analysis for Lightguide Applications

[November 19, 2021]
This time, we want to highlight the Grating Order Analyzer, which uses the rigorous Fourier Modal Method/Rigorous Coupled Wave Analysis (FMM/RCWA) for grating characterization and illustrate its application in the case of a slanted grating for lightguide incoupling.
[November 19, 2021]

As we saw in last week’s newsletter, grating structures with various shapes are often an essential part of lightguide-based display systems for augmented and mixed reality applications. The complexity of the gratings and the manifold roles they usually play in these setups require a thorough analysis of their behavior, while the small feature size means a rigorous method is necessary to perform said analysis accurately. The fast physical optics modeling and design software VirtualLab Fusion puts several tools at your disposal to make this task easier and more user-friendly.

This time, we want to highlight the Grating Order Analyzer, which uses the rigorous Fourier Modal Method/Rigorous Coupled Wave Analysis (FMM/RCWA) for grating characterization and illustrate its application in the case of a slanted grating for lightguide incoupling.

Read more

Never miss an event and be always up to date!

Subscribe to our newsletter and get our weekly information about the latest technical updates and you will never miss an event again.

We will send out our newsletter on a weekly basis, generally, per category.

Please review our privacy policy for further information on user data handling.

Contact & Trial

LightTrans GmbH

Phone +49.3641.53129-50

info (at) lighttrans.com

VirtualLab Fusion

Get free trial version

Get an offer