VirtualLab Fusion Applications
Find out more!
Upcoming Events
all upcoming news and events
What's new?
all news
Cross-Platform Simulations with Python
The fast physical optics software VirtualLab Fusion prides itself on its “connecting field solvers” approach, which brings together different specialized electromagnetic field solvers applied on different components in a seamless, non-sequential way, to enable the physical optics simulation of the whole system. The logical extension of this approach is to not only connect solutions inside the software, but to also allow cross-platform simulations to reap the benefits from other programs or programming languages in combination with the physical-optics know-how that characterizes VirtualLab Fusion, thus extending the options for simulation, optimization, design and post-processing.
Hence, in this week’s newsletter we are doing a deep dive in how to use the programming language Python to call and control simulations in VirtualLab Fusion. Please take a look at the documents linked below to find a detailed guide on how to set up and work with the interface between Python and VirtualLab Fusion, accompanied by an application example in which we perform a parameter sweep on a grating in 1D and 2D.
Real Beam Splitter for Interferometer Applications
Interferometry is a keystone technology for many applications in the area of optical metrology. It is widely used for the measurements of e.g. surface profiles, defects and mechanical or thermal distortion with high precision. Most interferometry systems rely strongly on beam splitters that divide the incoming beam. A detailed investigation of all the different physical effects these components may have on the light requires a modeling approach that can simulate real optical beam splitter components.
With this in mind, we share two use cases in this week’s newsletter that incorporate the most common designs for such kind of beam splitters. In the first one we have a look at a cube beam splitter based on Frustrated Total Internal Reflection (FTIR) and demonstrate how the gap influences the transmission and reflection efficiencies. In the second use case we investigate the phase shift created by a real beam splitter in comparison to an idealized, functional one.
New Features for Lightguide Modeling
With the release of version 2023.1 a whole pack of new and interesting features have been added to the fast physical optics modeling and design software VirtualLab Fusion. Fitting to one of the themes of the release – the “Detector Revolution” – we presented new tools to extract information about your optical system by means of the new Universal Detector and various helpful Add-ons.
In this week’s newsletter we want to highlight especially the new additions that have been made to the Lightguide Toolbox – our go-to tool for anyone interested in applications in the field of augmented and mixed reality (AR & MR), like the design and analysis of Near-Eye Displays. With the new release users have access to an overhauled Uniformity Detector that now includes graphical representations of the pupils that are used to calculate the uniformity, for a more convenient use. Furthermore, we also added a brand-new detector add-on designed to share information from the lightguide with the detector. With its help, users can now detect the field inside a lightguide and see the grating regions superimposed on the result. For more information, please take a look at the documents below.
Read more