LightTrans
One of our experts is giving an online VirtualLab Fusion webinar.

Upcoming Webinars

Get inspired by our free webinars and learn what is possible with our software. Below you may find a list of our upcoming webinars.

Exploring VirtualLab Fusion

20 April 2021
10:00 – 11:00 (CEST)
18:00 – 19:00 (CEST)
Register here

Exploring VirtualLab Fusion

20 April 2021
10:00 – 11:00 (CEST)
18:00 – 19:00 (CEST)
Register here

Please note: Due to different time zones worldwide, this webinar will take place twice.

Previous Webinars

Below you may find a list of our webinars which have already taken place. Fill out the form on the webinar page and get access to our webinar for watching it on demand.

Flat Optics – about Freeform, Fresnel, Diffractive and Meta Lenses

In this webinar we invite you to join us on a journey through the concepts, prospects, challenges, and myths of the different versions of flat components, with an emphasis on lenses.

Flat Optics – about Freeform, Fresnel, Diffractive and Meta Lenses

The steady interest in miniaturizing optical systems ultimately leads to flat optics, which includes any concept to reduce the thickness of components and systems by introducing surfaces with high functionality. In this webinar we invite you to join us on a journey through the concepts, prospects, challenges, and myths of the different versions of flat components, with an emphasis on lenses. 

New Features in VirtualLab Fusion for Fiber Optics

VirtualLab Fusion comes with new features for the modeling and design of systems for fiber optics. Based on linearly polarized (LP) modes and Gaussian-Laguerre solver techniques, we present several use cases.

New Features in VirtualLab Fusion for Fiber Optics

VirtualLab Fusion comes with new features for the modeling and design of systems for fiber optics. Based on linearly polarized (LP) modes and Gaussian-Laguerre solver techniques, we present:

  • The fiber source, which emits customer-selected weighted fiber modes,
  • The fiber coupling efficiency detectors, which provide the efficiency of the power transferred into multi-mode and single-mode fibers,
  • The fiber component, which enables the propagation of electromagnetic fields through fibers.

These new features significantly extend the physical-optics modeling and design capability of VirtualLab Fusion for fiber optics applications. This is demonstrated by examples such as:

  • Investigating the aberration effects on the fiber modes in the focal region,
  • Analyzing the field propagation through an optical system with fiber components,
  • Presenting a complete design workflow of the coupling system of either single-mode or multi-mode fiber, including lens system design and tolerance analysis.

Diffractive Lenses: Concept, Modeling, Design, and Fabrication Data

In the webinar we introduce the concept of diffractive lens and generalize it to the usage of digital holographic surfaces. We briefly compare it with the metalens and Fresnel-type lens approaches. The modeling theory of diffractive lenses is discussed and its implementation and usage in VirtualLab Fusion demonstrated.

Diffractive Lenses: Concept, Modeling, Design, and Fabrication Data

Smooth, often spherical, surfaces between homogeneous media dominate lens design. The introduction of aspherical and freeform surfaces has added design freedom to obtain compact lens systems with improved quality and new functions. According to the Fresnel equations, surfaces typically do not add a phase variation to the incident light. Diffractive surfaces introduce the freedom to add an extra phase variation onto the incident light. Interest in how to use this extra design freedom best has gained momentum in recent years, aiming at more compact systems and better performance. The nature of the diffractive structure allows for special functionalities like multiple foci, but also leads to some challenges, like a strong wavelength dependency.

Gratings as a Part of Optical Systems

The construction of optical systems combining diffraction gratings and lenses and other smooth surfaces is a common occurrence. We have selected three examples to illustrate in the webinar the potential of VirtualLab Fusion in this field.

Gratings as a Part of Optical Systems

The construction of optical systems combining diffraction gratings and lenses and other smooth surfaces is a common occurrence, across many applications like spectroscopy, in microscopy using the grating as a test object, or in AR & MR glasses. This is not reflected in the field of simulation: it is rare, even today, to find software which can convincingly tackle the modeling of such systems. The reason for this is the vast difference in the structural dimensions of the two types of components, which means drastically different algorithms are needed for each of them.

Lightguides for Mixed Reality Glasses: Design Techniques and Challenges

The use of lightguides with diffraction gratings has become of great interest in the development of augmented reality and mixed reality glasses. This webinar will introduce you to a suitable physical-optics modeling technology and demonstrate it in the software VirtualLab Fusion.

Lightguides for Mixed Reality Glasses: Design Techniques and Challenges

The use of lightguides with diffraction gratings has become of great interest in the development of augmented reality and mixed reality glasses. The propagation of light through such lightguides requires simulation techniques beyond ray tracing. It must be possible to include physical-optics effects in a controllable manner to meet the needs in modeling and design. This webinar will introduce you to a suitable physical-optics modeling technology and demonstrate it in the software VirtualLab Fusion.

1 2 3

Contact & Trial

LightTrans

Phone +49.3641.53129-50

info (at) lighttrans.com

VirtualLab Fusion

Get free trial version

Get an offer