Free Webinar "Spatio-temporal fs pulse modeling with VirtualLab"

(September 16, 2014)

We would like to invite you to our free webinar "Spatio-temporal fs pulse modeling with VirtualLab", held by Daniel Asoubar. The webinar includes the following topics: Ultra-short pulse representation in VirtualLab Pulse propagation through homogeneous dispersive media fs pulse propagati...

Visit us at EOSAM in Berlin 2014

(August 29, 2014)

LightTrans invites you to visit us at EOSAM in Berlin (September 17-18). We are looking forward to welcome you at our booth. We will be glad to demonstrate you solutions provided by the optical modeling and design software VirtualLab in detail. Solutions include but are not limited to: Design and a...

VirtualLab™ 5.10 Released!

(July 04, 2014)

The main focus of the development of VirtualLab 5.10 has been the improvement of the light shaping concepts available within the Lighting Toolbox. Refractive and reflective shaping elements are available. It is also possible to define more complex optical systems with additional components that can ...

Solutions for Optical Modeling and Design

Modern optical systems may contain a large variety of optical components as for example refractive, diffractive, hybrid, Fresnel and GRIN lenses, diffractive optical elements, diffusers, beam shapers, diffractive beam splitters, computer generated holograms, phase plates, gratings, elements with free form surfaces and micro lens arrays. In addition light sources with different properties as for example degree of coherence, color and polarization can be used.

The design of such systems or system components is a challenging task which can be solved efficiently only on the basis of optical simulations. The optical modeling software VirtualLab enables such simulations. VirtualLab provides a variety of design algorithms for laser systems, light shaping, homogenization and illumination systems, gratings and laser resonators. The optics software VirtualLab is based on the concept of Field Tracing which unifies optical modeling techniques ranging from geometrical optics to electromagnetic approaches. Field Tracing enables the simulation of optical systems including diffraction, interference, partial coherence, aberrations, polarization and vectorial effects.

LightTrans provides solutions for optical modeling and design which are enabled by VirtualLab. These solutions include services beyond the software tool which enable our customers to solve their optical design problems fast and efficiently. Our tutorials and application scenarios allow a fast start using VirtualLab. Public and customized software courses, technical and application support at different levels according to the needs of our customers allow an optimal integration of VirtualLab in the design process from the very beginning. Furthermore, LightTrans offers optical engineering services especially in diffractive optics, micro-optics, and all types of waveoptical simulations of optical systems.

Waveoptical Simulation and Design of Laser Systems

VirtualLab allows the optimization and design of laser systems including macro as well as micro optical components. Simulated building blocks of laser systems include a laser source, several optical components, and one or more light detectors. The simulation includes waveoptical effects like polarization, coherence, diffraction and interference. [more]

Analysis and Control of Ultrashort Pulses

VirtualLab enables the spatio-temporal simulation of fs and as pulses, including chirp, the evaluation of the optical path length, pulse deformation effects like group velocity dispersion and higher-order dispersion effects. The simulation includes waveoptical effects like polarization, coherence, diffraction and interference. [more]

Shaping, Splitting and Diffusing Light by Diffractive Optical Elements

VirtualLab enables the design and simulation of diffractive optical elements for laser light shaping. The Diffractive Optics toolbox uses the powerful Iterative Fourier Transform Algorithm and parametric optimization to optimize for example diffractive beam splitters, diffractive diffusers and diffractive and refractive beam shapers. Optical simulations include diffraction, interference, polarization and temporal and spatial degree of coherence. [more]

Homogenization and Shaping of LED and Excimer Laser Light

The optical simulation and design software VirtualLab enables the design of illumination systems for homogenization and shaping of LED and Excimer laser light. The homogenization and shaping of light can be done by micro optical elements. Optical simulation and design includes diffraction, interference, spatial and temporal degree of coherence and aberrations. [more]

Analysis and Design of Gratings

VirtualLab is a grating software which enables the rigorous simulation of 2D and 3D gratings with the Fourier Modal Method including surface gratings, volume gratings, diffraction gratings, holographic gratings, Bragg gratings, zeroth-order gratings and moth-eye structures. The analysis includes polarization effects (TE-TM or x-y coordinate system), free positioning with tilts and general incident waves. [more]

Analysis and Optimization of Laser Resonators

VirtualLab enables the simulation and optimization of fundamental and higher order resonator eigenmodes for complex stable and unstable resonator setups. The simulation includes waveoptical effects like diffraction and polarization as well as nonlinear light amplification (gain saturation), refractive index modulations (e. g. by thermal lenses) and the calculation of output power. [more]