Workshop: “Waveoptical analysis and optimization of pulsed laser systems”

(March 25, 2015)

LightTrans offers together with PhotonicNet and the University of Hannover the 2-day workshop: “Waveoptical analysis and optimization of beam focusing and shaping systems for ns-, ps- and fs-pulsed lasers” on April 21st and 22nd 2015. The workshop will be given in German and is taking place at the ...

Webinar "Shaping, Splitting and Diffusing Laser Light by Diffractive Optical Elements”

(March 02, 2015)

LightTrans invites you to our free Webinar “Shaping, Splitting and Diffusing Laser Light by Diffractive Optical Elements”, held by Dr. Hagen Schweitzer on March 11 2015. The webinar includes the following topics: Splitting of laser beams by diffractive beam splitting elements. Diffusing of laser...

VirtualLab Training Courses March 16-20 2015 in Jena

(March 02, 2015)

LightTrans offers two Training Courses for VirtualLab taking place March 16-18 2015 and March 19-20 2015 in Jena, Germany: Course 1: “Introduction to the simulation and optimization of laser systems with VirtualLab” (March 16-18). Course 2: “Analysis and design of light shaping and homogenizatio...

Solutions for Optical Modeling and Design

LightTrans provides Solutions for optical modeling and design which are enabled by VirtualLab. Solutions include software tools and additional services. Public and customized software courses, technical and application support at different levels according to the needs of our customers allow an optimal integration of VirtualLab in the design process from the very beginning. LightTrans also offers optical engineering services especially in diffractive optics, micro-optics, and all types of waveoptical simulations of optical systems. LightTrans Solutions help to minimize R&D costs and development time. Simulations with VirtualLab enable highly innovative developments of optical systems and system components. The following are the most important examples of supported Solutions:

Waveoptical Simulation and Design of Laser Systems

VirtualLab allows the optimization and design of laser systems including macro as well as micro optical components. Simulated building blocks of laser systems include a laser source, several optical components, and one or more light detectors. The simulation includes waveoptical effects like polarization, coherence, diffraction and interference. [more]

Analysis and Control of Ultrashort Pulses

VirtualLab enables the spatio-temporal simulation of fs and as pulses, including chirp, the evaluation of the optical path length, pulse deformation effects like group velocity dispersion and higher-order dispersion effects. The simulation includes waveoptical effects like polarization, coherence, diffraction and interference. [more]

Shaping, Splitting and Diffusing Light by Diffractive Optical Elements

VirtualLab enables the design and simulation of diffractive optical elements for laser light shaping. The Diffractive Optics toolbox uses the powerful Iterative Fourier Transform Algorithm and parametric optimization to optimize for example diffractive beam splitters, diffractive diffusers and diffractive and refractive beam shapers. Optical simulations include diffraction, interference, polarization and temporal and spatial degree of coherence. [more]

Homogenization and Shaping of LED and Excimer Laser Light

The optical simulation and design software VirtualLab enables the design of illumination systems for homogenization and shaping of LED and Excimer laser light. The homogenization and shaping of light can be done by micro optical elements. Optical simulation and design includes diffraction, interference, spatial and temporal degree of coherence and aberrations. [more]

Analysis and Design of Gratings

VirtualLab is a grating software which enables the rigorous simulation of 2D and 3D gratings with the Fourier Modal Method including surface gratings, volume gratings, diffraction gratings, holographic gratings, Bragg gratings, zeroth-order gratings and moth-eye structures. The analysis includes polarization effects (TE-TM or x-y coordinate system), free positioning with tilts and general incident waves. [more]

Analysis and Optimization of Laser Resonators

VirtualLab enables the simulation and optimization of fundamental and higher order resonator eigenmodes for complex stable and unstable resonator setups. The simulation includes waveoptical effects like diffraction and polarization as well as nonlinear light amplification (gain saturation), refractive index modulations (e. g. by thermal lenses) and the calculation of output power. [more]

The optical systems involved in these solutions may contain a large variety of optical components as for example refractive, diffractive, hybrid, Fresnel and GRIN lenses, diffractive optical elements, diffusers, beam shapers, diffractive beam splitters, computer generated holograms, phase plates, gratings, elements with free form surfaces and micro lens arrays. In addition light sources with different properties as for example degree of coherence, color and polarization can be used.

The optical modeling software VirtualLab enables simulations with those optical components. VirtualLab provides a variety of design algorithms for laser systems, light shaping, homogenization and illumination systems, gratings and laser resonators. The optics software VirtualLab is based on the concept of Field Tracing which unifies optical modeling techniques ranging from geometrical optics to electromagnetic approaches. Field Tracing enables the simulation of optical systems including diffraction, interference, partial coherence, aberrations, polarization and vectorial effects.