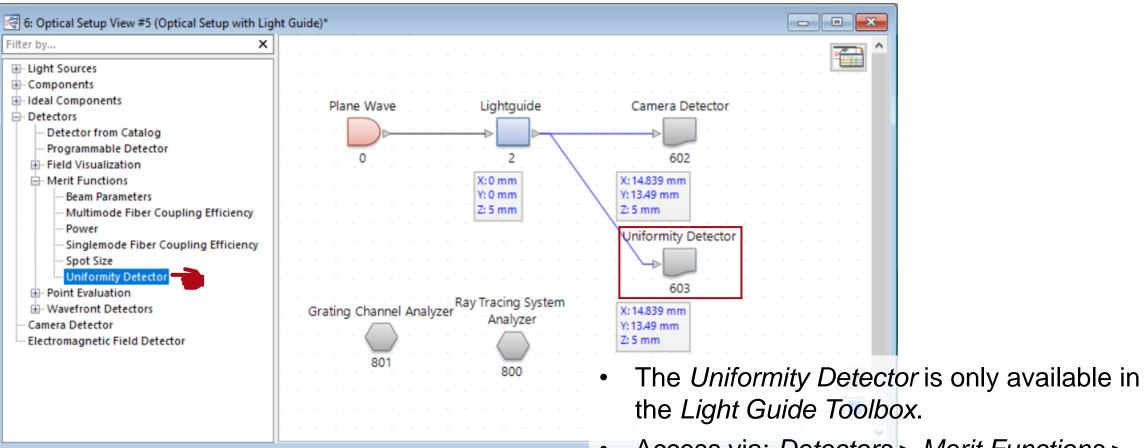

Uniformity Detector for Lightguide Systems

Abstract

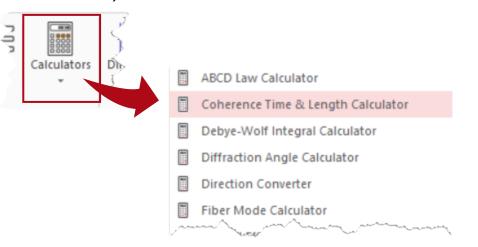
For the evaluation of the performance of lightguide systems in the field of AR/MR (augmented or mixed reality) devices, the lateral uniformity of the light distribution in the eyebox is one of the most crucial parameters. For the purpose of measuring and optimizing the lateral uniformity during the design process, VirtualLab Fusion provides the Uniformity Detector, which enables the required investigations. In this document we demonstrate the available options and how to operate the Uniformity Detector.


This Use Case Shows ...

How to use the *Uniformity Detector* of the *Light Guide Toolbox* to calculate the uniformity along specified pupils?

Detector Window an	d Resolution	Detector Fun	aion	
- Coherence Parame	ters			
Summation Type	Coherent	Summation		\sim
Pupil Parameters				
		-1		
Shape	Elliptic		Rectangular	
Size		3.5 mm	×	3.5 mm
Pupil Positions	from Central R	ays	Pupil Position	ons on Grid
Pupil Grid				
Number of Pupils		3 🖨	×	3 🜲
Distance		2.5 mm	×	2.5 mm

Uniformity Detector



Access via: Detectors > Merit Functions > Uniformity Detector

Detector Function: Coherent Parameters

ion V
py from Calculator
ectangular 100 µm
upil Positions on Grid
3 ★ 200 µm

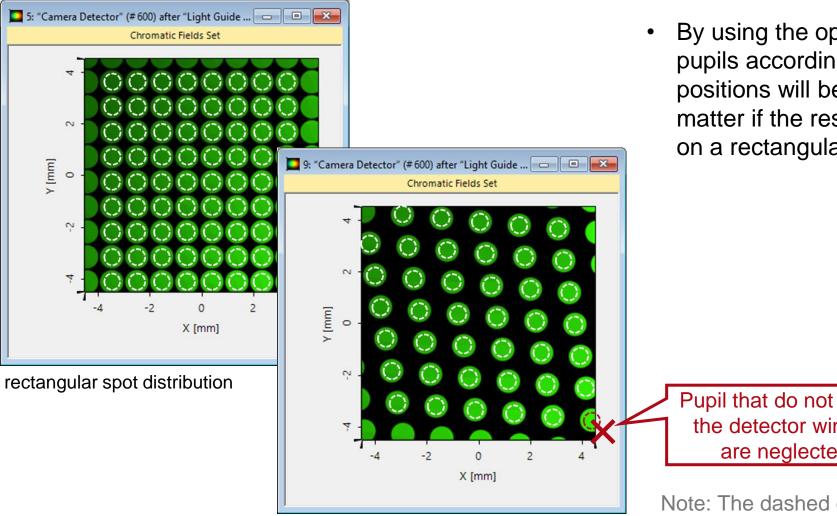
- If there is more than one coherent mode, the overlaying modes can be added coherently, incoherently, or partially coherently.
- For the *Partially Coherently Summation*, you can specify the degree of coherence by entering a *Coherence Time* (or copying it from a *Coherence Time & Length Calculator*).

Detector Function: Pupil Parameters

Coordinate Systems	Detector Window and Resolution Detector Function Coherence Parameters Summation Type Coherent Summation V	
Positio Orientat	pil Parameters ape	100 µm
Detector Parameters	 ○ Pupil Positions from Central Rays ● Pupil Positions on Grid Pupil Grid Number of Pupils 3 → × 3 → Distance 200 µm × 200 µm 	3

- The *Uniformity Detector* evaluates the impinging intensity in configured local areas, which are called pupils.
- Each pupil is defined by its size (dx × dy) and t shape, which can be set either elliptical or rectangular.

elliptical pupil:


rectangular pupil:

Detector Function: Pupil Positions

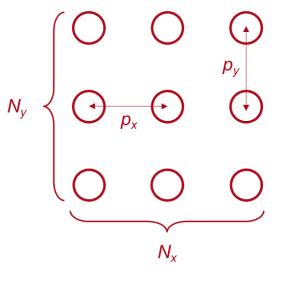
Edit Uniformity De	tector			×
Coordinate Systems	Detector Window and Coherence Paramete Summation Type		on V	
Position / Orientation	Pupil Parameters Shape Size	Elliptical 100 µm	O Rectangular 100 μm	
Detect Paramet	Pupil Positions from	Central Rays	O Pupil Positions on Gr	id
Transforms	Lame	m man m	many manager man	

- Once the size and shape of the regarded pupils is set, the number and positions of the pupils in the window of detector must be configured.
- The first option is, to automatically determine the positions of the pupils according to the central ray of each individual footprint.
- The detector will only places pupils on spots, where the whole pupil is inside the detector window. All other partial footprints will be neglected.

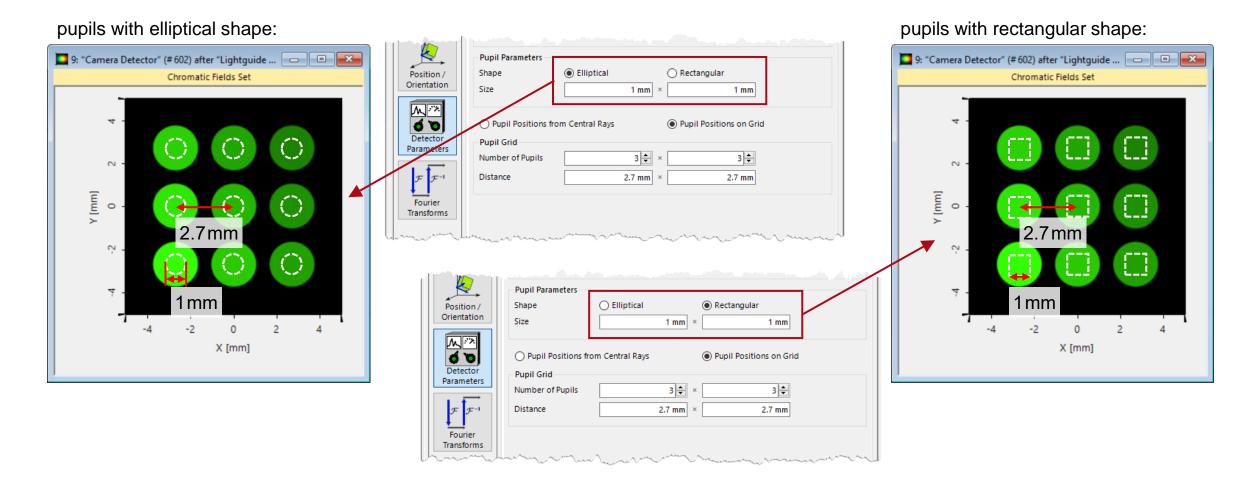
Example of Pupil Positions based on Central Rays

general spot distribution

By using the option to position the evaluated pupils according to the central rays, the positions will be arranged automatically, no matter if the resulting beams are distributed on a rectangular grid or not.

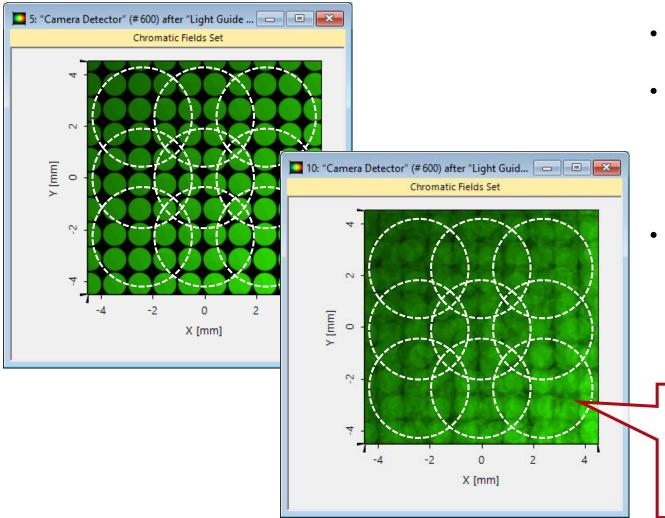

Pupil that do not fit into the detector window are neglected.

Note: The dashed circles are just for illustration of the pupils, while users will not see them in simulation.


Detector Function: Pupil Positions

Edit Uniformity De	tector		×
Coordinate Systems	Detector Window and Coherence Paramete Summation Type		~
Position / Orientation	Pupil Parameters Shape Size	Elliptical Image: 0 Registration 100 µm	ctangular 100 μm
Detect	Pupil Positions from	Central Rays (Pupil Positions on Grid
F F	mber of Pupils tance	3 ★ × 200 µm ×	3 🜩 200 µm
Fourie Transforma	- 1 man		

- As a second option, an equidistant rectangular grid of pupils can be defined, which is specified by the number of pupils N_x × N_y and the distance of their centers p_x × p_y.
- This grid is centered around the center of the window of the detector.



Example of Pupil Positions arranged on a Grid

Note: The dashed circles are just for illustration of the pupils, while users will not see them in simulation.

Measuring lateral Uniformity in the Eyebox

- The different positions of pupils represent a moving eye of the user of the device.
- In practical applications, the particular lightguide may be designed for a range of modes of the desired field of view (FOV), and thus an overlap of these modes on the detector.
- It depends on the actual evaluation strategy, whether the lateral uniformity should be measured per FOV mode or for all directions together.

The uniformity detector calculates the average intensity *I* within each pupil. Each pupil represents one position of the eyebox. The pupil grid should be arranged to cover the whole detector window but not exceed the border.

Uniformity Detector Output

The Uniformity Detector provides the following output:

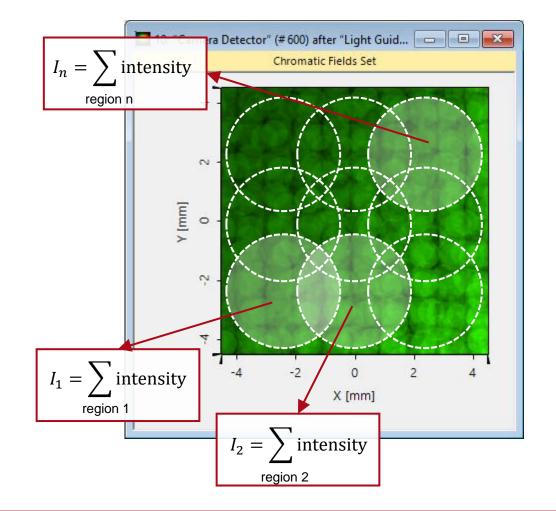
1. intensity value within each pupil

$$I_n = \sum_{\text{region n}} \text{intensity}$$

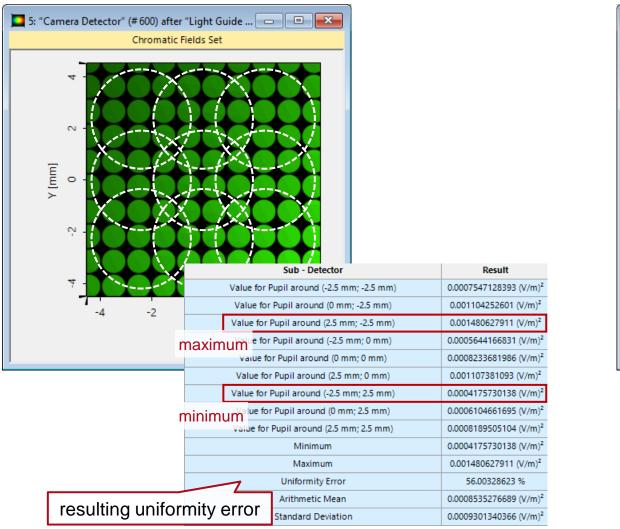
2. minimum and maximum value

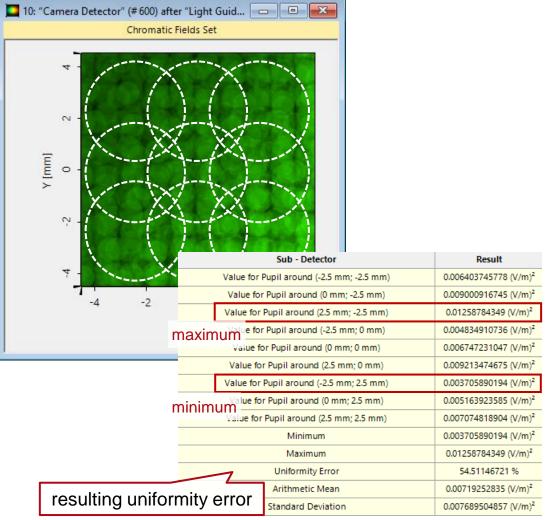
$$I_{\min} = \min_{n}(I_n), \ I_{\max} = \max_{n}(I_n)$$

3. uniformity error


$$\delta(I) = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$$

4. arithmetic mean


$$\langle I \rangle = \frac{1}{n} \sum_{i=1}^{n} I_i$$


5. standard deviation

$$\sigma(I) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (I_i - \langle I \rangle)^2}$$

Examples of Uniformity Detector Output

title	Uniformity Detector for Lightguide Systems
document code	LIG.0012
document version	1.0
software edition	VirtualLab Fusion AdvancedLight Guide Toolbox Silver Edition
software version	2021.1 (Build 1.180)
category	Feature Use Case
further reading	 Complex Lightguide System with a 2D Eye Pupil Expansion and Human Eye Model Construction of a Light Guide Modeling of a "HoloLens 1"-Type Layout with Light Guide Component Light Guide Layout Design Tool k-Domain Layout Visualization Simulation of Lightguide with 1D-1D Pupil Expander and Real Gratings