

Components, Solvers and Fourier Domains – Plane Surface

Abstract

The field-tracing technology in VirtualLab Fusion rests on the philosophy of "connecting" field solvers": using different solvers for different components inside a single system, so that the best-suited option is applied to each part of the system. The choice exists for each solver to be implemented in the space domain or in the spatial-frequency domain. One or the other will be selected depending on the mathematical characteristics of said solver – for many of the most common components, the corresponding solver is going to be much lighter numerically in one domain than in the other, and therefore faster. This results in a simulation sequence that must move back and forth between the Fourier domains.

Modeling Task

source

- plane wave
- wavelength: 532 nm
- angle: 30°
- truncated by circular aperture (2.5 mm diameter)

see the full Application Use Case:
 <u>"Modeling of Etalon with Planar or Curved Surfaces"</u>

Connecting Solvers!

source

- plane wave
- wavelength: 532 nm
- angle: 30°
- truncated by circular aperture (2.5 mm diameter)

- Field tracing connects electromagnetic field solvers!
- An optical system is broken up into its different constituent parts.
- Each part is modeled with a specific field solver.
- In general, these solvers can be implemented in the space (x) domain or in the spatial-frequency (k) domain.
- VirtualLab Fusion connects all the solvers in a seamless, non-sequential way, to provide a fully electromagnetic solution to the system!

Domain of Application of the Solvers

For solvers implemented in the space domain, the fieldtracing sequence would look like this...

... while for solvers implemented in the k domain, the field-tracing sequence would look like this

Domain of Application of the Solvers

Some Solvers and Their Domains

Hint: click on the logos for additional documentation on the solvers!

... as well as to internal propagation between surfaces in some cases, like the *Lens System* component

> Free-space propagation (propagation in a homogeneous, isotropic medium) always takes place in the **k domain** – in other words, we propagate the **plane-wave spectrum** of the field

Free-Space Propagation: Why K Domain?

Space domain

Rayleigh-Sommerfeld integral:

$$V_{\ell}^{\mathsf{out}}\left(\boldsymbol{\rho}, z\right) \propto \iint_{-\infty}^{+\infty} V_{\ell}^{\mathsf{in}}\left(\boldsymbol{\rho}', z_{0}\right) \frac{\mathrm{e}^{\mathrm{i}k_{0}nR}}{R} \left(\mathrm{i}k_{0}n - \frac{1}{R}\right) \frac{\Delta z}{R} \mathrm{d}^{2}\rho'$$

with $R = \sqrt{\left(x - x'\right)^{2} + \left(y - y'\right)^{2} + \left(\Delta z\right)^{2}}$

Spatial-frequency domain

Plane-wave propagation operator:

$$\tilde{V}_{\ell}^{\mathsf{out}}\left(\boldsymbol{\kappa},z\right) = \tilde{V}_{\ell}^{\mathsf{in}}\left(\boldsymbol{\kappa},z_{0}\right) \times \mathrm{e}^{\mathrm{i}k_{z}\left(\boldsymbol{\kappa}\right)\Delta z}$$

Free-Space Propagation: Why K Domain?

Space domain

Rayleigh-Sommerfeld integral:

$$V_{\ell}^{\mathsf{out}}\left(\boldsymbol{\rho}, z\right) \propto \iint_{-\infty}^{+\infty} V_{\ell}^{\mathsf{in}}\left(\boldsymbol{\rho}', z_{0}\right) \frac{\mathrm{e}^{\mathrm{i}k_{0}nR}}{R} \left(\mathrm{i}k_{0}n - \frac{1}{R}\right) \frac{\Delta z}{R} \mathrm{d}^{2}\rho'$$

with $R = \sqrt{\left(x - x'\right)^{2} + \left(y - y'\right)^{2} + \left(\Delta z\right)^{2}}$

Spatial-frequency domain

Plane-wave propagation operator:

$$\tilde{V}_{\ell}^{\mathsf{out}}\left(\boldsymbol{\kappa},z\right) = \tilde{V}_{\ell}^{\mathsf{in}}\left(\boldsymbol{\kappa},z_{0}\right) \times \mathrm{e}^{\mathrm{i}k_{z}\left(\boldsymbol{\kappa}\right)\Delta z}$$

What Solvers Do We Need in This System?

- As an infinitely extended ideal plane surface → Fresnel Matrix
- Solver in **k domain**

• Implemented in *Plane Surface* component

- As a curved surface without curvature → Local
 Plane Interface Approximation (LPIA)
- Solver in **x domain**

• Implemented in *Lens System*, *Curved Surface*, *Spherical Lens* and *Light Guide* components, among others.

The Importance of the Fourier Transform

The Importance of the Fourier Transform

The Importance of the Fourier Transform

Practical Conclusions: Which Solver Do I Use?

Two possible solvers for plane interfaces in an optical system: the Fresnel Matrix and the Local Plane Interface Approximation (LPIA). Which one is more appropriate for your system depends on the circumstances:

Fresnel Matrix:

- Rigorous solver for ideal plane surface
- Works in spatial-frequency (k) domain
- Fewer Fourier transforms to be calculated
 potential numerical gain
- Assumes infinite surface

LPIA:

- Solver for curved surfaces
- Works in space (x) domain
- Requires computation of additional Fourier transforms
- Considers finite size (aperture) of surface

Practical Hint: Component Substitution

Peek into VirtualLab Fusion

catalog of Fourier transform algorithms

Edit Simulation Settings	
General Field Tracing Classic Field Tracing	
Oversampling Factor Gridless Data Oversampling Factor Gridded Data Fourier Transform Selection Accuracy Source Modes Components Detectors	1 1 1
Fourier Transform	Inverse Fourier Transform
Semi-Analytical Fourier Transform Pointwise Fourier Transform Use Spherical Phase Only	Semi-Analytical Fourier Transform Pointwise Fourier Transform Use Spherical Phase Only
Enforce Pointwise Fourier Transform	if Numerical Effort is Too High
Channel Configuration Option Pre-Selected	~

VirtualLab Fusion Technologies

title	Components, Solvers and Fourier Domains – Plane Surface
document code	MISC.0090
version	1.0
edition	VirtualLab Fusion Basic
software version	2020.2 (Build 2.22)
category	Feature Use Case
further reading	 Modeling of Etalon with Planar or Curved Surfaces Fourier Transform Settings – Discussion at Examples The Local Plane Interface Approximation (LPIA) The Fresnel Matrix Channel Configuration for Surfaces and Grating Regions