

Grating Analysis and Smoothly Modulated Grating Parameters on Lightguides

Abstract

In order to control the uniformity and efficiency in a lightguide device for AR/MR applications, it is necessary to vary grating parameters, such as fill factor and grating height, over certain areas, e.g. in the expansion and outcoupling grating regions. For this purpose, VirtualLab Fusion enables the introduction of smoothly varied grating parameters inside one region, where the desired variation can be configured in very different ways. This also includes a tool to investigate the provided diffraction efficiencies for the specific incident conditions and grating parameters. This example explains, how to apply these tools.

Illustration of the Modeling Task

introduction of continuously modulated grating parameters on lightguides (e.g., fill factor)

General Workflow with Additional Guidance

 Configuration of base optical lightguide setup (not part of this use case)

2. Application of the *Footprint and Grating Analysis* tool including the generation of the optical setup equipped with all requirements for the parameter modulation

3. Definition of desired grating parameter modulation

The starting point is an existing, executable lightguide system, which has the basic geometries (desired distances and positioned grating regions) and grating specifications (orientation, period, orders).

- Construction of a Light Guide [Use Case]
- Light Guide Layout Design Tool [Use Case]

The regions for which a modulation of parameters is desired must be configured using real grating structures.

- How to Set Up a Lightguide with Real Grating Structures [Use Case]
- Simulation of 1D-1D Pupil Expander with Real Gratings [Use Case]

The *Footprint and Grating Analysis* tool is used to specify the desired range for the variation of the grating parameters, calculate rigorously the according Rayleigh coefficients for the specified conditions of the light-grating interactions and generate an optical setup where the actual parameter variation can be defined.

Footprint Analysis of Lightguides for AR/MR Applications [Use Case]

Note:

The grating modulation is defined for individual grating regions.

Open Footprint and Grating Analysis Tool & Set Optical Setup

Footprint and Grating Analysis Tool

For a general workflow and overview of this tool see the following use case:

Footprint Analysis of Lightguides for AR/MR Applications

Selection of Grating Parameters and Associated Ranges

- It is possible to vary one or two grating parameters at the same time.
- The sampling of the parameter space can be relatively coarse, since afterwards interpolation techniques will be applied in between the calculated points.
- The table lists all available parameters of the grating. For the introduction of modulated grating parameters within a region, it is not allowed to use a parameter that changes the light paths (e.g., such as the period).

Calculation of Lookup Tables

处 45: C:\U	sers\\2021-04-27 Footprint Tool.fg	ja*						×
Path for	Storing Lookup Tables: <u>C:\Te</u>	<u>mp\</u>						
Detecte	d Grating Regions with Footprint Data —							
Status	Region		View	Heatmap	Raw Data	Vary		
-	Light Guide (After Surface Layout) (1) → Region # 1: Incoupling Grating	Surface #1	3 5	1	0 ⁰¹ 10			
Ē	Light Guide (After Surface Layout) (1) → Region #2: Expansion Grating	Surface #1	35	1	0 10	Configure	₿X	0
-	Light Guide (After Surface Layout) (1) → Region # 3: Outcoupling Grating	Surface #1	35	1	0 ⁰¹			
		Calculate Lookup	Table	s				
,	🛃 Ger	erate Optical Setup with M	lodula	tion Funct	ion			
Validity	: 1 ²					◄ Back	Nex	t >

After configuring the desired variation of the grating parameters, the resulting grating characteristic can be calculated and stored in lookup tables by clicking on *Calculate Lookup Tables*.

Calculation of Lookup Tables

The lookup tables are calculated for the defined variation of the grating parameters and FOV modes determined in the first step of the *Footprint and Grating* Analysis tool. The look up tables are automatically saved to the specified folder:

Name	Date modified	Туре	Size
KayleighMatrices_Expansion Grating_(-0.44791; 0.44534; -0.77527)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.46055; 0.37108; -0.80635)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.46055; 0.37108; -0.80635)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(-0.52431; 0.37108; -0.76642)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(-0.52431; 0.37108; -0.76642)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.53695; 0.44534; -0.71649)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.53695; 0.44534; -0.71649)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.61122; 0.52174; -0.59515)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.61122; 0.52174; -0.59515)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.5671; 0.5671; -0.59732)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.5671; 0.5671; -0.59732)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.41776; 0.5671; -0.70984)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(-0.41776; 0.5671; -0.70984)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.49115; 0.49115; -0.71941)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.49115; 0.49115; -0.71941)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.49372; 0.49115; -0.71765)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.49372; 0.49115; -0.71765)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.56967; 0.4152; -0.70929)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.56967; 0.4152; -0.70929)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.37108; 0.46055; -0.80635)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.37108; 0.46055; -0.80635)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.44534; 0.53695; -0.71649)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.44534; 0.53695; -0.71649)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.52174; 0.61122; -0.59515)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.52174; 0.61122; -0.59515)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB

Calculation of Lookup Tables

<u>\</u> 45: C:∖U	sers\\2021-04-27 Footpr	nt Tool.fga*						
Path for	Storing Lookup Tables:	<u>C:\Temp\</u>					show	lookup
Detecte	d Grating Regions with Footp	int Data					table	
Status		Region	View	Heatmap	Raw Data		Vary	
-	Light Guide (After Surface L → Region # 1: Incoupling C	ayout) (1) Surface #1 irating	35		0 ⁰¹			\sim
	Light Guide (After Surface L → Region #2: Expansion (ayout) (1) Surface #1 arating	35	1	0 ⁰¹ 10		Configure	🛛 🖡
-	Light Guide (After Surface L → Region # 3: Outcoupling	ayout) (1) Surface #1 Grating	35		0 10			
[04/27/2 [04/27/2 [04/27/2 [04/27/2 [04/27/2	021 16:45:35]: 021 16:45:35]: 021 16:45:35]: 021 16:45:35]: 021 16:45:35]:	Calculate Looku Process grating parameter variatio Process grating parameter variatio Process grating parameter variatio Process grating parameter variatio Process grating parameter variatio	p Table n calcu n calcu n calcu n calcu n calcu	lation: 5 % lation: 10 % lation: 15 % lation: 20 % lation: 25 %			_	^
04/2//2 [04/27/2 [04/27/2 [04/27/2 [04/27/2 [04/27/2 [04/27/2 [04/27/2 [04/27/2 [04/27/2 [04/27/2	021 16:45:35]: 021 16:45:35]:	Process grating parameter variatio Process grating parameter variatio ion finished. entry stored: BayleichMatrices, Expan	n calcu n calcu n calcu n calcu n calcu n calcu n calcu n calcu n calcu n calcu	lation: 30 7 lation: 35 7 lation: 40 % lation: 45 % lation: 55 % lation: 60 % lation: 60 % lation: 100 ration: 100	6 6 6 6 5671: 0 415 ion	i2· -0 71°	134) 532 nm .	R-1 da 💙
Validity							 Back 	Next ►

By clicking on the button with the magnifying glass, the data for specific orders and directions can be investigated in detail:

#	Show	Direction	Wavelength	Order	~
1		(0.46055; 0.37108; -0.80635)	532 nm	R -1	1
2		(0.46055; 0.37108; -0.80635)	532 nm	R 0	
3		(-0.52175; 0.37108; -0.76817)	532 nm	R -1	
4		(-0.52175; 0.37108; -0.76817)	532 nm	R 0	
5		(0.53695; 0.44534; -0.71649)	532 nm	R -1	
6		(0.53695; 0.44534; -0.71649)	532 nm	R 0	
7		(-0.44535; 0.44534; -0.77675)	532 nm	R -1	
8		(-0.44535; 0.44534; -0.77675)	532 nm	R 0	
9		(0.61122; 0.52174; -0.59515)	532 nm	R -1	
10		(0.61122; 0.52174; -0.59515)	532 nm	R 0	
11		(-0.37108; 0.52174; -0.76817)	532 nm	R -1	
12		(-0.37108; 0.52174; -0.76817)	532 nm	R 0	
13		(0.4152; 0.4152; -0.80946)	532 nm	R -1	
14		(0.4152; 0.4152; -0.80946)	532 nm	R 0	¥

Investigation of Grating Behavior

Investigation of Grating Behavior

The efficiency of the grating is shown for different polarization states (TE, TM, left circular, right circular polarization, as well as unpolarized light). In the simulation of the full lightguide, the local occurring polarization states of the incident light will be considered automatically.

Note: In case of two varied grating parameters, the result are 2D color plots.

Load Rayleigh Matrices from Lookup Tables

The Rayleigh matrices saved in the defined folder can be loaded in VirtualLab Fusion and reveal the complex-valued entries of this 2×2 matrices.

Name	Date modified	Туре	Size
RayleighMatrices_Expansion Grating_(-0.44791; 0.44534; -0.77527)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.46055; 0.37108; -0.80635)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.46055; 0.37108; -0.80635)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.52431; 0.37108; -0.76642)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.52431; 0.37108; -0.76642)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.53695; 0.44534; -0.71649)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.53695; 0.44534; -0.71649)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.61122; 0.52174; -0.59515)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.61122; 0.52174; -0.59515)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.56/1; 0.56/1; -0.59/32)_532 nm_K0	22/11/2021 14:06	DA File	/ KB
RayleighMatrices_Expansion Grating_(0.5671; 0.5671; -0.59732)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(-0.41776; 0.5671; -0.70984)_532 nm_R0 🔣	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(-0.41776; 0.5671; -0.70984)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.49115; 0.49115; -0.71941)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.49115; 0.49115; -0.71941)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.49372; 0.49115; -0.71765)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.49372; 0.49115; -0.71765)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.56967; 0.4152; -0.70929)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(-0.56967; 0.4152; -0.70929)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB
RayleighMatrices_Expansion Grating_(0.37108; 0.46055; -0.80635)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
🛃 RayleighMatrices_Expansion Grating_(0.37108; 0.46055; -0.80635)_532 nm_R-1	22/11/2021 14:06	DA File	7 KB
🛃 RayleighMatrices_Expansion Grating_(0.44534; 0.53695; -0.71649)_532 nm_R0	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.44534; 0.53695; -0.71649)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.52174; 0.61122; -0.59515)_532 nm_R0 🔣	22/11/2021 14:06	DA File	7 KB
KayleighMatrices_Expansion Grating_(0.52174; 0.61122; -0.59515)_532 nm_R-1 🔣	22/11/2021 14:06	DA File	7 KB

Load Rayleigh Matrices from Lookup Tables

Generation of Updated Optical System

N	45: C:\U	lsers\\2021-04-27 Footprint Tool.fga*							×
	Path for	Storing Lookup Tables: <u>C:\Temp\</u>							
	Detecte	d Grating Regions with Footprint Data							
	Status	Region	View	Heatmap	Raw Data		Vary		
	-	Light Guide (After Surface Layout) (1) Surface #1 → Region # 1: Incoupling Grating	25	1	0 ⁰¹				
		Light Guide (After Surface Layout) (1) Surface #1 → Region #2: Expansion Grating	35	1	0 ⁰¹		Configure	X	8
	-	Light Guide (After Surface Layout) (1) Surface #1 → Region #3: Outcoupling Grating	35	1	0 ⁰¹				
	04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2 04/27/2		o Table n calcu n calcu	s lation: 5 % lation: 10 % lation: 15 % lation: 20 % lation: 20 % lation: 30 % lation: 35 % lation: 40 % lation: 55 % lation: 55 % lation: 55 % lation: 60 % lation: 60 % lation: 100 ration; 4.0 %	% 5671: 0 415	20 71	134) 532 nm	R-1 da	~
	Validity	: 🖍 🚺					 Back 	Nex	t ►

- Finally, an adapted optical system can be generated, where the real grating structures have been replaced by the calculated lookup tables, which enable the configuration of the continuously modulated parameters.
- The *Optical Setup* with modulated grating regions is first generated with an interpolated variation from a finite set of local positions. The user can configure the desired sampling and interpolation before the *Optical Setup* is generated. This can also be modified later, including setting a programmable modulation).

Generation of Updated Optical System

57: Optical Setup View # Filter by X Image: Ught Sources Image: Components Image: Ideal Components <tr< th=""><th>56 (C:\Users\\2021-04-27 Footprint Toc Plane Wave</th><th>t Guide (After face Layout) Camera Detector</th><th>In the resulting of grating parameters of the second secon</th><th>optical setup, the option ers has been activated a ave already been loaded</th><th>to use the modulated and the corresponding I into the system.</th></tr<>	56 (C:\Users\\2021-04-27 Footprint Toc Plane Wave	t Guide (After face Layout) Camera Detector	In the resulting of grating parameters of the second secon	optical setup, the option ers has been activated a ave already been loaded	to use the modulated and the corresponding I into the system.
	Scanning Source	Edit Light Guide Component	×	Edit Grating Region	×
	· · · · · · · · □ ⊳· · · · ·	Solid Surface Layouts		Shape Region Channels Grating	
	500 Grating Channel Ray T Analyzer	Surface Name Edit Coordinate Systems 2 Plane Surface Edit Surface 2 Plane Surface Edit Surface Layout Edit Surface Layout	Info Surface layout containing 3 regions. Surface layout containing 0 regions.	2D Grating (Invariant in y-Direction) Grating Period 268.7 Orientation (Rotation about z-Axis) Order Selection Efficiencies	O 3D Grating nm i 45°
	801	# Name of Region Region Type Peri 1 Incoupling Grating Rectangular Region 380	nm Ziela Zie	O Constant O Progr	rammable
< >		2 Expansion Grating Simple Polygon Region 268 3 Outcoupling Grating Rectangular Region 380	Inm	Use Modulated Grating Parameters within Region Grating Stack Binary Grating	🚰 Load 🥒 Edit 🔍 View
		Ca Apply Absorption Outside of Region on Surface Tools	OK Cancel Help	Grating Parameter Modulation Function Number of parameters in modulation function: 1 → Relative Slit Width (from 10 % to 90 %) Modulation defined by Sampled Data (Spline Interpo	lation)
		Transforms		Lookup Table Number of entries within lookup table: 36 → Number of different wavelength(s): 1 → Number of different direction vector(s): 18	Sec. 2010
		📕 Validity: 🕑	OK Cancel Help	Validity: 🚹 🚺	OK Cancel Help

Configuration of Grating Modulation

dit Grating Region Shape Region Channels Grating ② 2D Grating (Invariant in y-Directio Grating Period	n) O 3D Gratin 268.7 nm	ng	The p detail positi	oaram by clons, t	neter r licking that w	nodu j on <i>l</i> ere c
Orientation (Rotation about z-Axis)	-45°		Edit Grating	g Parameter N	lodulation Fund	tion
Order Selection Efficiencies	O Programmable	From Real Gratings	Define Settings	Grating Param	meter Function for ameter #1	r Two Gratin <u>c</u>
Grating Stack			Property	Rei Per		
Binary Grating		🖾 Load 🥒 Edit 🔍 View	Minimur	n		10
Grating Parameter Modulation Fund Number of parameters in modula → Relative Slit Width (from 10 % Modulation defined by Sampled f	ction tion function: 1 5 to 90 %) Data (Spline Interpolation)	Fdit Q View	Maximu	m on Defined by		90
Lookup Table Number of entries within lookup t → Number of different waveleng → Number of different direction	table: 36 th(s): 1 vector(s): 18	C Edit	# 1	x-Coordinate 1.2557 mm	y-Coordinate -5.1152 mm	Relative Sli 30 %
Validity: 🚹 🚺		OK Cancel Help				
			Interpol	ation Method:	Spline I	nterpolation

The parameter modulation in the region can be configured in detail by clicking on *Edit*. Here you can also find the local positions, that were chosen in the *Generate OS* dialog.

Name Property	Relative Slit Width Percentage		
Minimum Maximum	10 % 90 %		
Modulation Defined I	V Image: Sampled Data te y-Coordinate Relative Slit Width n -5.1152 mm 30 %	O Programmable Fi	Load From Data

Modulation Based on Sampled Positions or a Grid

- One possibility to configure the lateral modulation is by using local positions (support points).
- For each position (or support point), a certain value of the grating parameter can be set.
- Points can be added or removed. For an automatic equidistant grid of points, please repeat the steps covered in slide #15.
- In between the support points, an interpolation of the data of the grating parameter(s) is used. There are two options:
 - Spline interpolation
 - Nearest neighbor (hard boundaries)

Modulation Based on Sampled Positions or a Grid

×

 \checkmark

Help

Modulation Based on Sampled Positions or a Grid

etting	is for Grating Pa	rameter #1				
lame	R	elative Slit Width				
roper	ty P	ercentage	~			
linim	um		10 %			
laxim	ium		90 %			
odulat	tion Defined by	● Sa	moled Data		able Fi	unction
	0 5		D. L.C. Charles	0		
#	x-Coordinate	y-Coordinate	Relative Slit Width			/ Edit Data Point
2	-6.5074 mm	-8.1269 mm	20 %			E Add Data Point
2	-3.0571 mm	-8.1269 mm	20 %			
4	-1 332 mm	-8 1269 mm	80 %			X Remove Data Point
5	393 11 um	-8 1269 mm	30 %			
6	2.1182 mm	-8.1269 mm	50 %			Load From Data
7	3.8434 mm	-8.1269 mm	30 %			- Array
8	5.5685 mm	-8.1269 mm	40 %			
9	7.2936 mm	-8.1269 mm	30 %			
10	9.0187 mm	-8.1269 mm	30 %			
11	-6.5074 mm	-7.2664 mm	50 %			
12	-4.7823 mm	-7.2664 mm	30 %		~	
	1					
nterp	olation Method:	Spline	Interpolation	Nearest Neighbo	r Interp	polation (Voronoi)
		<u> </u>				

- Now, the modulation of the grating parameter can be adapted by changing the values at the given positions.
- By clicking on *View*, the resulting variation is shown:

spline interpolated:

-2

Selected Parameter to Show

 \times

90%

50%

10%

Modulation Based on Analytical Description

Edit Grating Parameter N	Iodulation Function		>
Define Grating Paran	neter Function for Two Grating Par	ameters	
Settings for Grating Para	ameter #1		
Name Re	lative Slit Width		
Property Pe	rcentage v		
Minimum	10 %		
Maximum	90 %		
Modulation Defined by	○ Sampled Data	Programmable Function	п
Q View		OK Can	cel Help

- The second possibility for defining a smooth modulation of the grating parameters is the application of an analytical modulation function.
- In this example, we demonstrate a linear variation in the horizontal direction of the EPE grating region, as this is the expected main direction of light propagation.
- The function and its parameters can be configured by clicking on *Edit*.

Modulation Based on Mathematical Description

Source Co	ode Editor		_		×
Source Co	de Global Parameters Snippet Help Advanced Settings				
1 🗄	Preset using directives		x [double]		
26	tragion Additional using dimestives	T	y [double]		
27	#region Addicional using directives				
29	#endregion				
30	while close with data a forigent to conclude the problem. Conclude the form				
31 = 32	<pre>public class vimodule : IShippetArrayDoubleDouble_x_Double_y {</pre>				
33 🖯	<pre>public double[] GetData(double x, double y) {</pre>				
34					
35 🖻	#region Main method	_			
36	double[] returnValue = new double[2];				
38	// Add information about the parameter variation here.				
39	returnValue[0] = 0;				
40	<pre>returnValue[1] = 0;</pre>				
41					
42	tendnegion				
44	}				
45	ſ				
46	<pre>#region Snippet body</pre>				
impo	ort snippet				
17/	#endreghon	•			
^	Check Consistency Validity: 1	ОК	Cancel	He	elp

- In this example, a snippet for a linear modulation is provided alongside this document.
- Import the snippet by using the import button.
- In more general, a function has to be defined, that provides the desired grating parameter for the current position (x,y).

Modulation Based on Mathematical Description

Source Code Editor – 🗆 🗙							
Source Cod	e Global Parameters Snippet Help Advanced Settings						
43 🖯	<pre>public double[] GetData(double x, double y) {</pre>			x [double]			
44				y [double] StartPositionLin	e [Vector[on	
45 🗉	#region Main method			EndPositionLine	[VectorD	i	
40	//definition of the function			Value At Start Pos	sition [dou	ble]	
47	VectorD P1P2 - EndPositionline - StartPositionline:			ValueALEndFos	litori (dout	ne]	
40	<pre>double angle = (-1) * Math_Atan2(P1P2.Y, P1P2.X);</pre>						
50			. 1				
51	<pre>//setting the orientation of the modulation</pre>						
52	<pre>Matrix2x2D rotationMatrix = Matrix2x2D.RotationMatrix(angle);</pre>						
53	<pre>VectorD positionInLineCS = rotationMatrix * new VectorD(x, y);</pre>						
54	<pre>double relPos = (positionInLineCS.X - StartPositionLine.X) / P1P2.Abs();</pre>						
55							
56	<pre>//initialization the dimension of expected parameters</pre>						
57	<pre>double[] returnValue = new double[1];</pre>						
58							
59	//setting the grating parameters						
61	$\frac{1}{1} \left(\frac{1}{1} - \frac{1}{2} \right) = 0$						
62	l						
63	∫ else if (relPos > 1) {						
64	returnValue[0] = ValueAtEndPosition:						
65	}						
66	else {						
67	returnValue[0] = ValueAtStartPosition + (ValueAtEndPosition - ValueAtStartPosition)	*					
68	}						
69	return returnValue;		11				
70	#endregion						
71	}						
	terring Crimet had.	_					
	#region Snippet body		*				
Check Consistency Validity:					He	lp	

- In this example, the resulting modulation is defined by:
 - starting position
 - end position
 - the grating parameter at the stating position
 - the grating parameter at the end position
- Between the two defined positions the grating parameter is increased or decreased linearly.

Modulation Based on Mathematical Description

Edit Grating Parameter Modul	ation Function		×
Define Grating Parameter Settings for Grating Parameter Name Relative Property Percenta Minimum Maximum	Function for Two Grating Paran r #1 Slit Width Ige ~ 10 % 90 %	neters	
Modulation Defined by	◯ Sampled Data	Programmable Function	
StartPositionLine EndPositionLine ValueAtStartPosition ValueAtEndPosition		-7 mm	-5 mm -5 mm 10 % 90 %
View		OK Cancel	Help

- The modulation has been configured and can be modified by changing the defined variables of start and end position and the value range of the varied parameter.
- By clicking on *View*, the resulting smooth modulation of the corresponding grating parameter is shown:

title	Grating Analysis and Smoothly Modulated Grating Parameters on Lightguides
document code	LIG.0010
document version	1.0
software edition	VirtualLab Fusion AdvancedVirtualLab Fusion Light Guide Toolbox Gold
software version	2021.1 (Build 1.180)
category	Feature Use Case
further reading	 Footprint Analysis of Lightguides for AR/MR Applications Construction of a Light Guide Modeling of a "HoloLens 1"-Type Layout with Light Guide Component Light Guide Layout Design Tool k-Domain Layout Visualization Simulation of Lightguide with 1D-1D Pupil Expander and Real Gratings