

Young's Interference Experiment

Abstract

The Young's interference experiment was one of the well-known experiments that shows the wave nature of light. It is the fundamental of several quantum optics experiments nowadays. We reproduce this famous experiment in VirtualLab Fusion, by using a double slit with adjustable slit width and slit distance. With a single point source, we examine the influence from the slit width and the slit distance on the interference; then with an extended source we observe how the interference contrast changes with the lateral extension of the source.

Modeling Task – Single on-Axis Point Source

Fix Slit Distance (500 µm) and Vary Slit Width

slit width

100µm

14

Fix Slit Width (100 µm) and Vary Slit Distance

Modeling Task – Single off-Axis Point Source

Result for an Off-Axis Point Source (Lateral Shift X 60 µm)

Modeling Task – Extended Source

Interference with Extended Source

Peek into VirtualLab Fusion

Workflow in VirtualLab Fusion

- Programming a double-slit function
 - Programming a Double-Slit Function [Use Case]
- Check influence from different parameters with Parameter Run
 - Usage of the Parameter Run Document [Use Case]
 - Scanning Mode of Parameter Run [Use Case]
- Model partially coherent source by shifted elementary-field method

Polarization Basic Parameters	Mode Selection Spectral Par	Sampling	Ray Selection
Medium at Source I Air in Homogeneou	Plane us Medium		
嬞 Load	/ Ec	lit	Q View
Source Field: Longi Distance to Input P	tudinal and Lateral C lane)ffset	10 m
Lateral Offset		400 um	16 un
Input Field: Position Automatic Setti Manual Setting), Size and Shape ing 1 □ A	Apply Lateral Off	set of Source Fiel
Input Field: Position Automatic Setti Manual Setting	, Size and Shape	Apply Lateral Offe	set of Source Field
Input Field: Position Automatic Setti Manual Setting Shape Diameter	, Size and Shape	hpply Lateral Off ngular (400 μm] χ [set of Source Fielo ● Elliptic 400 µn
Input Field: Position Automatic Setti Manual Setting Shape Diameter Relative Edge	, Size and Shape	Apply Lateral Off ngular (0 400 µm) x [set of Source Field ● Elliptic 400 µm 10 %

VirtualLab Fusion Technologies

title	Young's Interference Experiment
document code	IFO.0015
version	1.0
edition	VirtualLab Fusion Basic
software version	2020.1 (Build 3.4)
category	Application Use Case
further reading	 <u>White-Light Michelson Interferometer</u> <u>Mach-Zehnder Interferometer</u>