

Polarization Conversion in Uniaxial Crystals

Abstract

When a linearly polarized beam is focused and then propagated through a uniaxial crystal, even when along the optic axis, complicated conversions may take place between different polarization components. Such an effect can be utilized for e.g. generation of optical vortices. Taking calcite crystal as an example, the conversion of polarization in uniaxial crystals is demonstrated in VirtualLab Fusion. The optical vortices generated within the process are visualized.

Modeling Task

System Building Blocks – Source

Gaussian Wave						
Polarization	Mode Sele	ction	Samplin	0	Pay Select	ion
Polarization Mode Se		tral Daramai	Sampini	9 Snati:	al Paramet	erc
Generate Cross	Section	cial Farance				
	F	lermite Gau	ssian Mo	de		~
Order	Ē		0			0
M^2 Parameter			1			1
Reference Wavele	ngth (Vacuur	n)		633 r	nm	\sim
Select Achromatic	: Parameter:					
Waist Radius (1/e^2)		1	.5 mm 🗴		1.5	mm
O Half-Angle Div (1/e^2)	ergence	0.0076942	657 <u>7</u> °	0.	007694265	7 <u>7</u> °
Rayleigh Leng	th	11.16983	366 m	1	1.1698336	6 m
Astigmatism						
Offset between y-	and x-Plane				0	mm
Copy from Cale	ulator	Copy to x- ai	nd y-Valu	es		\sim

The 1^{st} polarizer changes the Gaussian wave into x polarized. We assume this as the starting point for our system, so the corresponding polarization state (linearly polarized along x) is directly defined in the source.

System Building Blocks – Uniaxial Calcite Crystal

Parameters follow from Y. Izdebskaya et al., Opt. Express 17, 18196-18208 (2009)

Results

Results

Summary – Components...

of Optical System	in VirtualLab Fusion	Source Model/Component Solver
1. Source	Gaussian Source	
2. Polarizer	Polarizer	-
3. Lens	Ideal Lens	
4. Calcite Crystal	Crystal Plate	Layer Matrix [S-Matrix]
5. Detector	Camera Detector	-

Workflow in VirtualLab Fusion

- Set up input field
 - Basic Source Models [Tutorial Video]
- Construct real components using surfaces
- Set up Uniaxial Calcite Crystal
 - Optically Anisotropic Media in VirtualLab Fusion [Use Case]
- Define position and orientation of components
 - LPD II: Position and Orientation [Tutorial Video]

beaminion of bas	al Positi	ion and Orientation	×
Definition Type		Relative Definition \checkmark	
Measurement fro	m	Beam splitter (ideal) #1; CS of Channel '1'	
t	0	Input Channel Coordinate System 🗸 🧃	
Translation Para	ameters	Orientation Parameters	
Center Point	of Rotatio	ons	
Reference Po Used as Cen	oint to be ter Point	Reference Point of Input Channel \checkmark	
	Z-Axis Dir	rection Definition Angle / Axis Value Angle / Axis Value Angle / Axis Value	
Swap Order≎	Beta	a v 0°	
Ļ	Rotation Z-Ax	About Z-Axis cis Rotation Angle 0°	

VirtualLab Fusion Technologies

title	Polarization Conversion in Uniaxial Crystals
document code	CRO.0003
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Application Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Conical Refraction in Biaxial Crystals