

Observation of Vortex Array Laser Beam Generation from Ince-Gaussian Beam

Abstract

Ince-Gaussian modes are the third complete family of exact and orthogonal solutions of the paraxial wave equation alongside the Hermite-Gaussian and Laguerre-Gaussian modes. Ince-Gaussian modes have a diversiform transverse pattern. In this document, following in the steps of Chu et al. [Opt. Express 16, 19934-19949 (2008)], a Dove prism-embedded unbalanced Mach-Zehnder interferometer is used to simulate the generation of vortex array laser beams based on Ince-Gaussian modes. The resulting vortex array laser beam generated by the proposed interferometric setup maintains its beam profile during propagation, also through a focus. Thus, the proposed vortex array laser beams hold great promise for application in optical tweezers and atom traps in the form of twodimensional arrays.

Ref: Shu-Chun Chu, Chao-Shun Yang, and Kenju Otsuka, "Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer," Opt. Express 16, 19934-19949 (2008)

Building the System in VirtualLab Fusion

System Building Blocks – Source

Edit Ince Gaussian So	urce		×
Polarization Basic Parameter	Mode Selection s Spectral Para	Sampling meters S	Ray Selection patial Parameters
Generate Cross	Section		
Snippet	🥒 Edit		Validity: 🕑
Parameters			
WaistRadius			300 µm
EllipticityParame	eter		12
EvenPolynom	nials		
Order			8
Degree			8 ≑
			🕜 Help
Default Parameters	Ok	Cance	el Help

The Ince-Gaussian source can be found in *Light Sources -> Basic Source Models*, and offers the following adjustable parameters

- Waist radius
- Ellipticity parameter
- Order of mode polynomial
- Degree of mode polynomial

A more detailed explanation of the meaning of the parameters and configuration of the source can be found here: <u>Ince-Gaussian Modes</u>

System Building Blocks – Components and Detector

Simulation of Vortex Array Laser Beam Generation

Generated Vortex Array Using Different Mode Orders in Source

Effect of Ellipticity Parameter on Vortex Array Pattern

Polarization	Mode Selection	Sampling	Ray Selection
Basic Parameters	Spectral Paran	neters S	patial Parameters
] Generate Cross Algorithm Snippet	Section 🥒 Edit		Validity: 🕑
Parameters			
WaistRadius			300 µm
EllipticityParame	ter		12
EvenPolynom	ials		
Order			8 📥
Degree			8 ≑
			🕢 Help
efault Parameters	Ok	Cano	el Help

A larger value of the ellipticity parameter ε of the incident Ince-Gaussian laser beam reduces the curvature of the mode parabola, with the result that the generated vortices form a less distorted (squarer) array.

Summary – System Building Blocks...

of Optical System	in VirtualLab Fusion	Source Model/Component Solver
1. Source	Ince Gaussian Source	Ince-Gaussian mode calculation
2. Beam Splitter	Ideal Beam Splitter	-
3. Dove Prism	Plane Interfaces	Fresnel Matrix
4. Mirror	Ideal Mirror	Local Plane Interface Approximation
5. Lens	Ideal Lens	-
6. Detector	Camera Detector	-

Workflow in VirtualLab Fusion

- Set up input field
 - Basic Source Models [Tutorial Video]
 - Ince-Gaussian Modes [Use Case]
- Construct real components using surfaces
- Define position and orientation of components
 - LPD II: Position and Orientation [Tutorial Video]
- Set channels properly for non-sequential tracing
 - Channel Setting for Non-Sequential Tracing [Use Case]

	-			
Beam splitter (ideal) #1; CS of Channel '1'		annel '1'		
	Input Chann	el Coordinate System	ı v	8
eters Orien	tation Parame	ters		
Rotations				
nt to be r Point	Reference F	oint of Input Channe	ł	\sim
Axis Direction	Definition	-	 (iii) 	
	~	Value	-45°	
Beta	~		0°	
			0°	
	Rotations It to be r Point les lefinition Typ Axis Direction Appla Alpha Beta tation About	eters Orientation Parame Rotations It to be Point Reference F les Lefinition Type Cartesia Axis Direction Definition Angle / Axis Alpha ~	eters Orientation Parameters Rotations It to be Point Reference Point of Input Channe les Refinition Type Cartesian Angles Axis Direction Definition Angle / Axis Value Alpha Beta Lation About Z-Axis	eters Orientation Parameters Rotations It to be repoint Reference Point of Input Channel les terinition Type Cartesian Angles Axis Direction Definition Angle / Axis Value Alpha -45° Beta 0°

VirtualLab Fusion Technologies

Document Information

title	Observation of Vortex Array Laser Beam Generation from Ince-Gaussian Beam
document code	SRC.0003
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Application Use Case
further reading	 Mach-Zehnder Interferometer Ince-Gaussian Modes