

Modeling of an Array of Vertical Cavity Surface Emitting Laser (VCSEL) Diodes

Abstract

VCSELArray with Different Types of Grid

Arrays of vertical cavity surface emitting laser (VCSEL) diodes are of interest for various applications, e.g. beam splitters and pattern generators. In order to be able to investigate optical systems with this kind of light source an appropriate source model is required. In this document it is shown how a VCSEL array source can be modeled in VirtualLab Fusion.

Modeling Task: Array of VCSEL Modes Modeling

detector plane

Source Modeling – the Single VCSEL

Two Laguerre Gaussian modes with adjustable weights and divergence angle/waist radius are combined to model each single VCSEL point.

Chromatic Fields Set

-2 0

X [µm]

Chromatic Fields Set

-2

X [µm]

Mode 0.0

-6

Mode 0.1

0

Positioning of VCSELs on Grid Using Parameter Coupling

Results

Intensity distribution of a 5×5 VCSEL array

Workflow in VirtualLab Fusion

- Set up input field
 - Basic Source Models [Tutorial Video]
 - Simulation of Multiple Light Source with VirtualLab Fusion [Use Case]
- Calculate the parameters of both uncorrelated modes
 by using Parametric Optimization
 - Modeling of VCSEL Source by Two Uncorrelated Laguerre Modes [Use Case]
- Define Parameter Coupling for Automatic Positioning
 - Coupling of Parameters in VirtualLab Fusion [Use Case]

Polarization	Mo	de Seleo	tion	Sampli	ng	Ray	Selecti	
Basic Paramet	ers	Spect	ral Paran	neters	Sp	atial Pa	ramete	
] Generate Cro	ss Secti	ion						
Parameters of I	Fundam	nental M	ode					
ype		L	Laguerre Gaussian			Mode		
Reference Wavelength (Vacu			um)			940 nm		
Select Achroma	atic Para	ameter:						
Waist Radius (1/e^2) Half-Angle Divergence (1/e^2)		2)	1.538893651 µm					
		anca 🗆	11°					
Half-Angle (1/e^2)	Diverge			11*				
Half-Angle (1/e^2) Rayleigh Le	Diverge ngth		7.9169	11° 2151 μm				
Half-Angle (1/e^2) Rayleigh Le Multimode Par Coherent Aa	Diverge ngth ameters	stion of N	7.9169 Aodes	11° 2151 μm				
Half-Angle (1/e^2) Rayleigh Le Multimode Par Coherent Ad Maximum Orde	Diverge ngth ameters ccumula	ition of N	7.9169 Aodes	11° 2151 μm	×			
Half-Angle (1/e^2) Rayleigh Le Aultimode Par Coherent Ad Aaximum Orde Radial Order	Diverge ngth ameters ccumula er Angula	ition of N	7.9169 Nodes	0 0	× [Phase C	Offset	
Half-Angle (1/e^2) Rayleigh Le Aultimode Par Coherent Ad Aaximum Orde Radial Order 0	Diverge ngth ameters ccumula er Angula	ition of N	7.9169 Nodes	0 Weigi	× nt I	Phase C) rad	Offset	

Document Information

title	Modeling of an Array of Vertical Cavity Surface Emitting Laser (VCSEL) Diodes
document code	SRC.0005
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Application Use Case
further reading	 Modeling of VCSEL Source by Two Uncorrelated Laguerre Modes Simulation of Multiple light Source with VirtualLab Fusion