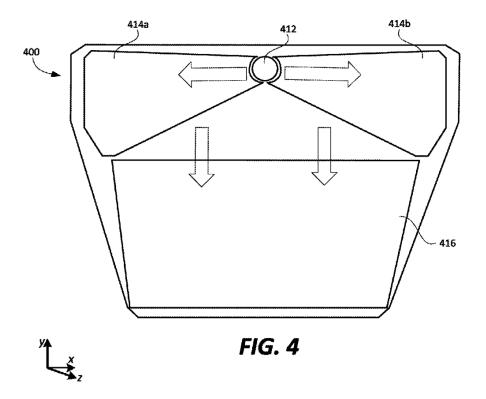


Lightguide with Butterfly Eye-Pupil Expander based on Patent by Microsoft

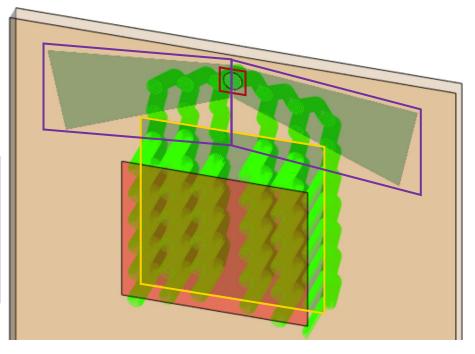
Abstract

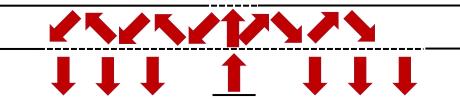


In the process of the design of lightquide devices for augmented and mixed reality (AR&MR) applications, parameters like the provided Field of View (FOV) are of major interest. In order to push the limits of the maximum FOV achievable, various approaches have been investigated, such as systems that split the FOV during the propagation from incoupler to outcoupler. One very popular approach is the so-called "butterfly pupil expansion", where two separate EPE grating regions are used for the positive and negative parts of the FOV, and which is also applied in Microsoft's Hololens 2. In this document, we show the realization of such an EPE concept in VirtualLab Fusion, based on patent US9791703B1 by Microsoft.

Modeling Task: Approach from Patent US9791703B1

		(10) Patent No.: US 9,791,703 B: Oct. 17, 201	
WAVEGUIDES WITH EXTENDED FIELD OF VIEW		FOREIGN PATENT DOCUMENTS	
	LICENSING, LLC, Redmond, WA	CN 104035157 A 9/2014 CN 104280885 A 1/2015 (Continued)	
Inventors:		OTHER PUBLICATIONS Han, et al., "Portable Waveguide Display System with a Large Fie	
Assignee:	MICROSOFT TECHNOLOGY LICENSING, LLC, Redmond, WA (US)	of view by Integrating Freeform Elements and Volume Holograms In Optics Express, vol. 23, Issue 3, Feb. 9, 2015, pp. 3534-3545 (Continued)	
Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	Primary Examiner — Loha Ben (74) Attorney, Agent, or Firm — Vierra Magen Marcus LLP	
Appl. No.:	: 15/097,661		
Filed:	Apr. 13, 2016	(57) ABSTRACT	
		An input-coupler of an optical waveguide couples lig corresponding to the image and having a corresponding FOV into the optical waveguide, and the input-coupler spl the FOV of the image coupled into the optical waveguide into first and second portions by diffracting a portion of t	
Field of C	(2013.01); G02B 5/1819 (2013.01); (Continued) Classification Search	light corresponding to the image in a first direction towa a first intermediate-component, and diffracting a portion of the light corresponding to the image in a second directic toward a second intermediate-component. An output-co- pler of the waveguide combines the light corresponding the first and second portions of the FOV, and couples the light corresponding to the combined first and second po- tions of the FOV out of the optical awaveguides so that the	
		light corresponding to the image and the combined first at second portions of the FOV is output from the optic	
		waveguide. The intermediate-components and the output coupler also provide for pupil expansion.	
		20 Claims, 5 Drawing Sheets	
	204 110 108 108 120 120 120 120 120 120 120 120 120 120	350	
	WAVEGUATEW Applicant: Inventors: Assignee: Notice: Appl. No. Filed: Int. Cl. G02B 27/ G02B 27/ U.S. Cl. CPC Field of C CPC	Applicant: MICROSOFT TECHNOLOGY LICENSING, LLC, Redmond, WA (US) Inventors: Tuomas Vallius, Espoo (FI); Jani Tervo, Espoo (FI) Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC, Redmond, WA (US) Notice: Subject to any disclaimer, the term of this patient is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Appl. No.: 15/097,661 Filed: Apr. 13, 2016 Int. Cl. G02B 27/14 (2006.01) (Continued) (Continued) (Continued) U.S. Cl. CPC	


Task Description


Source

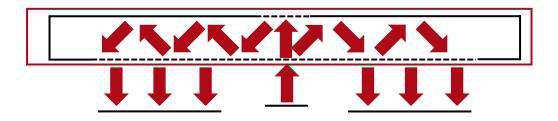
- Plane Wave
- 532nm wavelength
- 1mm × 1mm diameter
- FOV 40° × 20°

Eye Pupil Expander #1 (-20°-0°)

- idealized grating
- 340nm period (1D)
- rotation (in x-y plane): ±35°
- diffraction efficiency:
 R1 = 10%, R0 = 90%

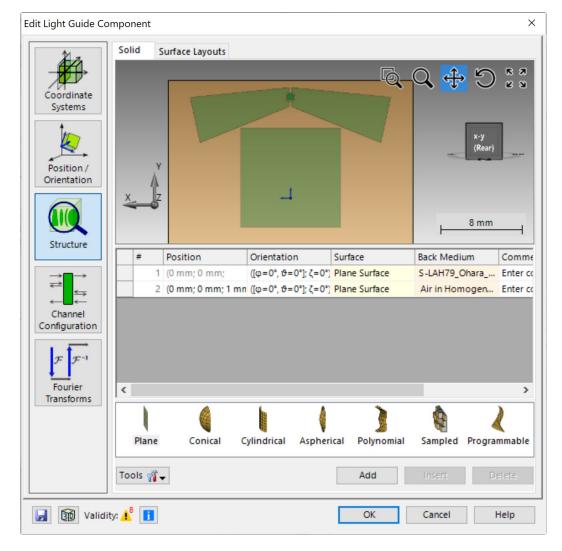
Incoupler(s)

- idealized gratings (first and second surface)
- 400nm period (1D)
- rotation (in x-y plane): ±15°
- diffraction efficiency:

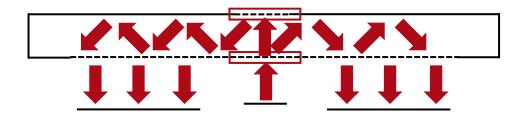

Eye Pupil Expander #2 $(0^{\circ} - 20^{\circ})$

- idealized grating
- 340nm period (1D)
- rotation (in x-y plane): ±35°
- diffraction efficiency:

Outcoupler

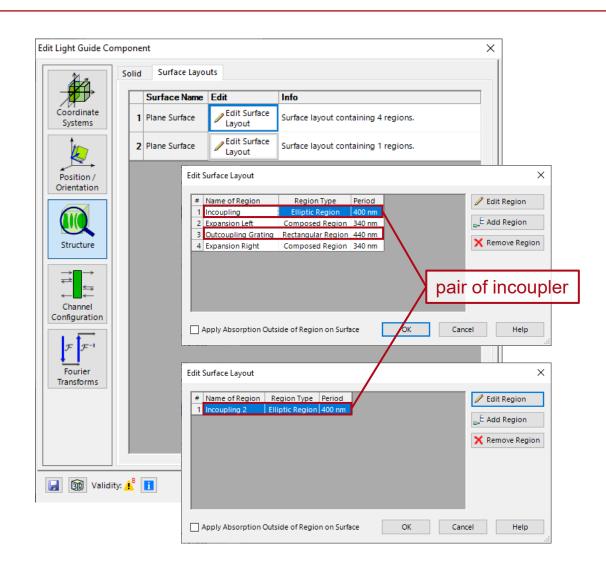

- idealized grating
- 440nm period
- rotation (in x-y plane): -90°
- diffraction efficiency:
 T1 = 10%, R0 = 90%

Light Guide Component

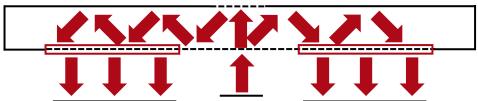


With the *Light Guide Component*, systems with regions with complex shapes can easily be defined. Furthermore, these regions can be equipped with idealized or real grating structures to act as incoupler, outcoupler or eye pupil expanders. More information under:

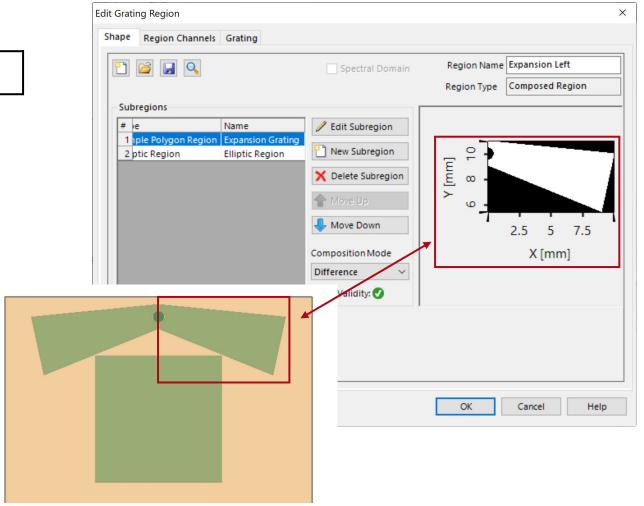
Construction of a Light Guide



Incoupling & Outcoupling Grating Regions



For the sake of simplicity, we use two 1D-periodic incoupler gratings (one on the first surface and one on the second one) in circularly shaped regions. This will lead to a slightly asymmetric behavior for the left and right part of the FOV, but it is possible to overcome this by combining both gratings into a single 2D-periodic structure (located either on the first or second surface).


In order to recombine and outcouple the light, a 1D-periodic outcoupler is applied, with a rectangular shaped region. This is a specific configuration and to allow for further flexibility in the design it is possible to exchange it by a 2D-periodic outcoupler instead.

Eye-Pupil-Expander (EPE) Region

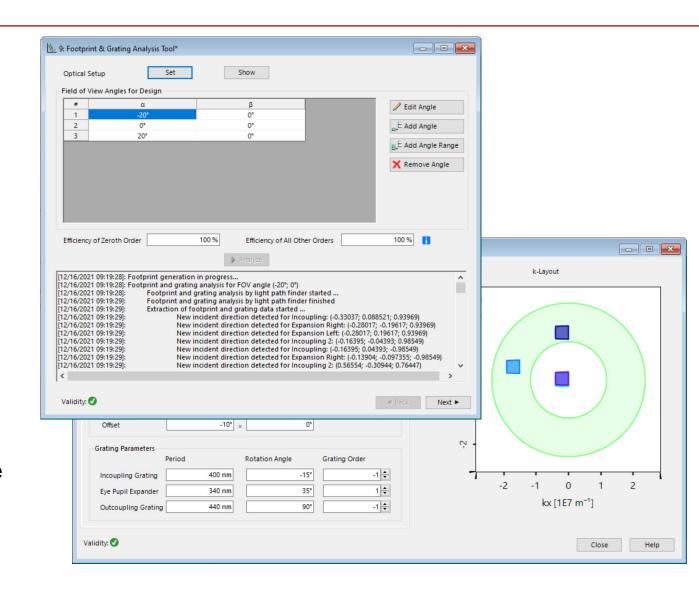
The shape of each region can be defined very flexibly using different approaches and definition strategies. In this example, both EPEs are defined by polygonal regions in combination with two ellipsoids to cut the inner part. The gratings are 1Dperiodic and rotated by ±35° (for left and right respectively). More information about region definition under:

Flexible Region Configuration

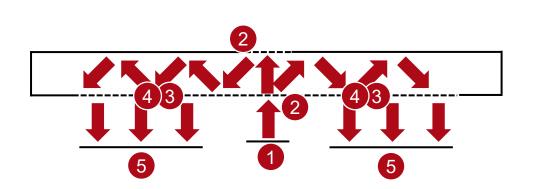
Design & Analysis Tools

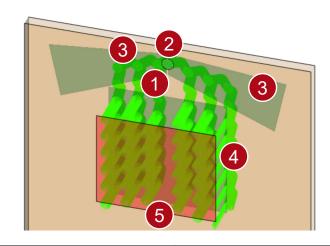
VirtualLab Fusion provides a series of tools to help the optical engineer in the task of designing and analyzing lightguide systems, including:

Lightguide Layout Design Tool:
 Design a lightguide with 1D-1D pupil expansion, which can serve as the basis of your system.


Light Guide Layout Design Tool

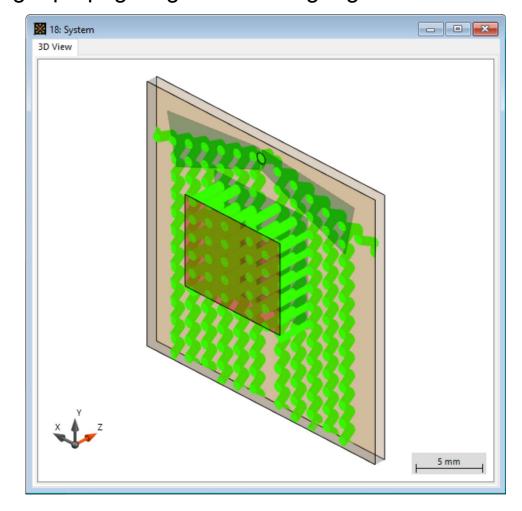
k-Domain Layout Tool:
 Analyze coupling conditions of your design.


k-Domain Layout Visualization

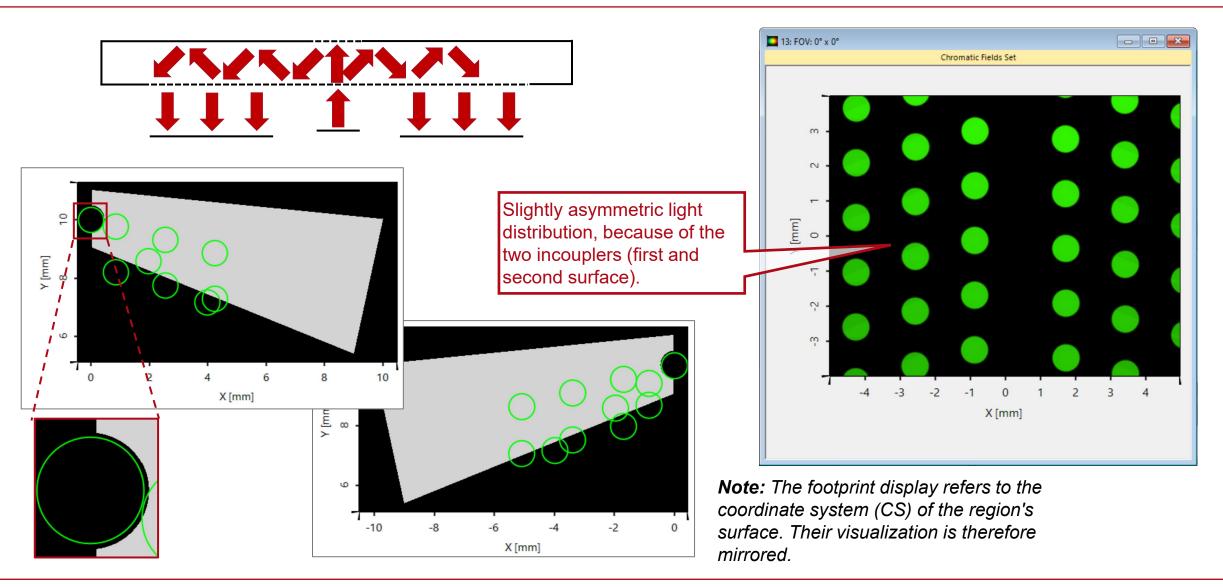

Footprint & Grating Analysis Tool:
 Detect the footprints in your system to determine the size and shape of your regions.

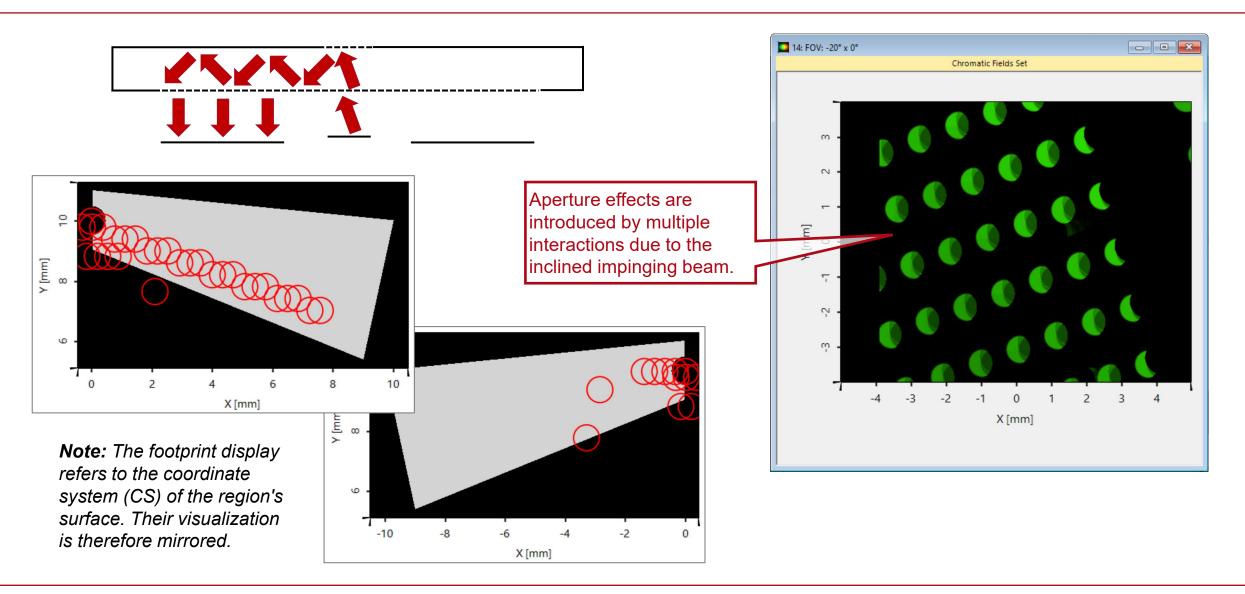
Footprint Analysis of Lightguides for AR/MR Applications

Summary – Components...

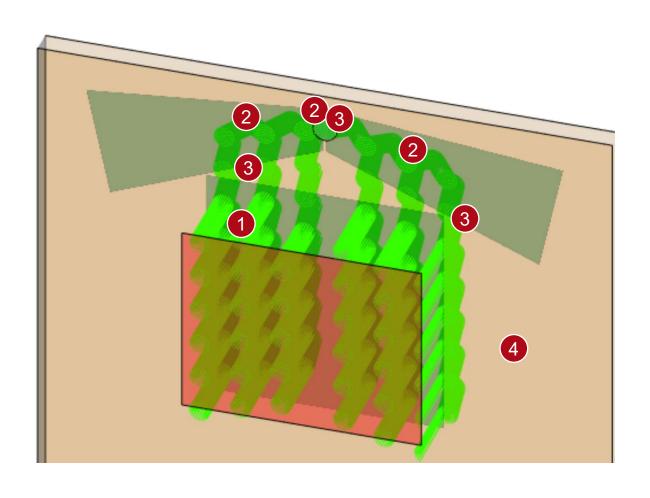

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Value
1. Source	Scanning Source	Truncated ideal plane waves with different incident angle
2. Incoupler	Idealized grating in Rectangular Region	Idealized Rayleigh matrices
3. Eye Pupil Expansion	Idealized grating in <i>Polygonal Region</i>	Idealized Rayleigh matrices
4. Outcoupler	Idealized grating in Rectangular Region	Idealized Rayleigh matrices
5. Eye	Camera Detector	Energy density measurement

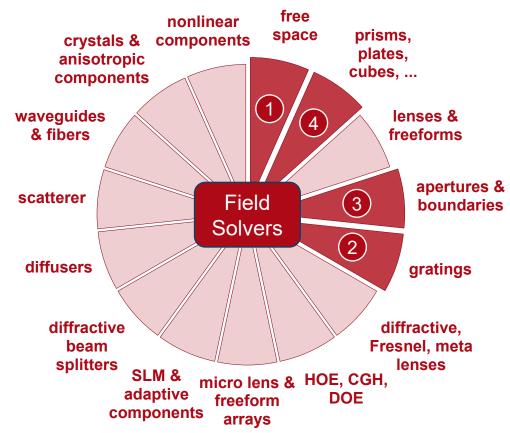
Result: Rays in System


only light hitting the "eye-box" (camera detector):


all light propagating inside the light guide:

FOV: $0^{\circ} \times 0^{\circ}$


FOV: -20° × 0°



FOV: 20° × 0°

VirtualLab Fusion Technologies

Document Information

title	Lightguide with Butterfly Eye-Pupil Expander based on Patent by Microsoft	
document code	LIG.0012	
document version	1.0	
software version	2021.1 (Build 1.180)	
software edition	VirtualLab Fusion AdvancedLight Guide Toolbox Silver Edition	
category	Application Use Case	
further reading	 Construction of a Light Guide Light Guide Layout Design Tool Flexible Region Configuration k-Domain Layout Visualization Footprint Analysis of Lightguides for AR/MR Applications Lightguide with 2D-periodic Grating Structures (diamond-shaped) based on Patent by Wave Optics 	

15 www.LightTrans.com