

Investigation of Focus Shift due to Thermal Lensing

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Abstract

processing The advance of material technologies leads to more and more applications which utilize high-power laser sources. This generates a significant heat in the individual amount of components in the optical system which may introduce various optical effects such as the thermal lensing effect which will shift the focal length in a lens. In this use case, we demonstrate the focus shift generated by thermal lensing inside a focusing lens. The thermal lensing effect itself is defined by imported deformed surfaces and an inhomogeneous media which is calculated according to imported temperature data.

Modeling Task

Building the System in VirtualLab Fusion

System Building Blocks - Source

Polarization	Mode Selection	Sampling	Ray Selection	1			
Basic Parameters	Spectral Pa	arameters	Spatial Parameters				
Generate Cross	Section		Edit G	aussian Wave			
	Hermite	Gaussian Mode		Polarization	Mode Selection	Sampling	Ray Selection
Order		0		Basic Parameter	s Spectral Para	meters	Spatial Parameters
M^2 Parameter		1	Pov	ver Spectrum Ty	/pe	Single W	'avelength \sim
Reference Wavele	ngth (Vacuum)	[1.07.um	Spectral Values			
Select Achromatic	Parameter:	L	nov pri	Navelength	1.07 µm	Weight	1
🔿 Waist Radius (1/e^2) 3.239	640021 µm x	3.23964				
Half-Angle Dive (1/e ²)	ergence	6 °					
Rayleigh Lengt	h 30.82	311586 µm	30.8231			Preview	
Astigmatism							
Offset between y-	and x-Plane	[
Copy from Calco	lator Copy to	x- and y-Values					
efault Parameter		k Can					
		Cali					

The Gaussian source model allow for a definition of a spatial Gaussian. The user can choose if the Gaussian shall be defined by its waist radius, divergence or Rayleigh length.

System Building Blocks - Components

Edit Ideal Lens	× Basic Parameters Physical Parameters Sampling Paraxial Lens Function Focal Length 100 mm		
Systems Position / Orientation	Lateral Offset 0 mm Wavelength Dependency		Edit Inhomogeneous Medium Component × Image: Solver Sampling Solver Sampling Coordinate Systems Component Solver Runge-Kutta Beam Propagation Method (RK-BPM) v Image: Edit Inhomoson Method (RK-BPM) v Position / Orientation Orientation Image: Autta Beam Propagation Method (RK-BPM) v Image: Edit Inhomoson Method (RK-BPM) v Image: Position / Orientation Image: Autta Beam Propagation Method (RK-BPM) solver works in the spatial domain (x-domain), in a pointwise manner. Mathematically, it solves, simultaneously, Image: Autta Beam Propagation (ODE) for the light path, and Image: Autta Beam Propagation Interview Image: Autta Beam Propagation (ODE) for the light path, and Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Interview Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Interview Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Interview Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Interview Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Interview Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Vector. Image: Autta Beam Propagation Interv
Validity: (An ide the so	eal lens component is used to collimate purce. There are no thermal effects d to the collimation lens	The heated lens is represented by an inhomogeneous media. The temperature-dependent refractive index is calculated according to the imported	$\overbrace{Configuration}^{one}$

System Building Blocks - Detectors

To determine the focal position, Beam Parameters Detectors applies the second moment theory, whereas the actual focal spot can be visualized by Electromagnetic Field Detector.

Summary – Components ...

of Optical System	in VirtualLab Fusion	Source Model/Component Solver
1. Source	Gaussian Wave	Spatial Gaussian Function
2. Collimation Lens	Ideal Lens	Wavefront Response
3. Lens with Thermal Lensing	Inhomogeneous Component	RK-BPM & Local Plane Interface Approximation
4. Detector	Beam Parameter Detector	-
5. Detector	Camera Detector	-

Data Import

vy Tel LaarsSurface1.cov ▼ 0 🗖 — □ ¥	Edit Inhomogeneous Medium Component	×		
File Hom Inser Draw Page Forr Data Reviv View Help Tear Image: Clipboard Image: Clipboard	Physical Extension Coordinate Systems Definition Area O Individual Definition Area Shape Diameter Diameter Frst Surface Programmable Surface Programmable Medium (x-y) Channel Configuration Image: Solver Image: Solver	Edit Programmable Surface × Structure Height Discontinuities Scaling Coating Periodization Surface Specification Agorithms Image: Coating Periodization Sinippet for Height Profile Image: Coating Periodization Agorithms Image: Coating Periodization Sinippet for Height Profile Image: Coating Periodization Image: Coating Parameters Image: Coating Parameters filename Surface 1_ThemailLensingSystem.cov ScalingFactorX 0.0001 ScalingFactorY 0.001 ScalingFactorZ 0.001 Definition Area Image: Coating Pianter Size and Shape Rectangular Size 100 mm Effect on Field Outside of Definition Area Image: Coating Pianter O Field Passes Plane Surface Image: Coating Pianter Position of Sumounding Absorbing Plane Image: Coating Pianter	3D View: Lens	×
The surfaces and temperature imported from point clouds Interpolation. The change in the ref calculated by $n(T) = n_0 + \frac{dn}{dT}(T - T_0)$	distribution is using Spline- iractive index is).	Specification Mode Boundary Minimum z-Position 6.126089289 mm z-Position Validity:	E 1.507 m. Note: Section 1.507 m. Note: Section 1.507 m. 1.507 m. 1.507 m. 1.507 m. 1.507 m.	

Please save the import files in the same directory as the os-files or adjust the "filename" parameter.

Simulation Results

Ray Tracing Result

Field Tracing Result - Focus Shift

The deformation of the lens surface and the internal change of the refractive index result in a shorten effective focal length.

The beam caustic is visualized by using the second moment theory with a Parameter Run session in Virtual Lab.

Field Tracing Result – Focal Spot

System with thermal lensing

VirtualLab Fusion Technologies

title	Investigation of Focus Shift due to Thermal Lensing
document code	
version	1.0
edition	VirtualLab Fusion Basic
toolbox(es)	-
software version	2020.1 (Build 3.4)
category	Application Use Case
further reading	 Gaussian Beam Focused by a Thermal Lens How to Work with the Programmable Medium and Example (Thermal Lens)

This use case was made possible by the Project "VIPO - Virtual Product and Process Optimization for Research in Digital Procedures and Methods for the Entire Product Life Cycle" funded by the Federal Ministry of Education and Research (BMBF).