

Grazing-Incidence Focusing Mirrors for X-Ray Beams

Abstract

Grazing-incidence reflective optics are widely used in X-ray beamlines, in particular Kirkpatrick-Baez (KB) elliptical mirror systems [A. Verhoeven, et al., Journal of Synchrotron Radiation 27.5 (2020): 1307-1319]. Focusing is accomplished by using two physically separated elliptical mirrors to focus the beam in two dimensions. The incoming Xrays can be focused by the system down to nanometer-scale spot size. Such system is modeled and simulated in VirtualLab Fusion and the focal field is calculated.

Modeling Task

fundamental Gaussian

Analytical Design of the Elliptical Mirror (1)

For the calculation of the elliptical surface height profile z(x) the following parameters are required:

- distance between source and the mirror center F_1
- distance between image/focus and the mirror center F_2
- grazing-incidence angle θ

1st elliptical mirror

- $F_1 = 50 \text{m}$
- $F_2 = 400 \text{ mm}$
- $\theta = 0.172^{\circ}$

2nd elliptical mirror

- $F_1 = 50.2 \text{m}$
- $F_2 = 200 \text{ mm}$
- $\theta = 0.172^{\circ}$

Analytical Design of the Elliptical Mirror (2)

- To calculate the height function z(x), two equations need to be considered.
 - elliptical equation

$$\frac{x^{\prime 2}}{a^2} + \frac{z^{\prime 2}}{b^2} = 1$$

- coordinate transform

$$\begin{pmatrix} x'\\z' \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi\\\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} x\\z \end{pmatrix} + \begin{pmatrix} x_0\\z_0 \end{pmatrix}$$

• The final height function z(x) is

$$z(x) = (z' - z_0) \cos \phi - (x' - x_0) \sin \phi$$

with
$$\phi = \arctan\left(-\frac{b^2}{a^2}\frac{x_0}{z_0}\right)$$
, $x_0 = \frac{F_1^2 - F_2^2}{4c}$, and $z_0 = -b * \sqrt{1 - x_0^2/a^2}$

unknowns a, b, x' and z' in next slide

Analytical Design of the Elliptical Mirror (3)

• *a* and *b* can be calculated from F_1 , F_2 and θ

$$a = \frac{F_1 + F_2}{2}$$

$$c = \frac{1}{2}\sqrt{F_1^2 + F_2^2 - 2F_1F_2\cos(\pi - 2\theta)}$$

$$b = \sqrt{a^2 - c^2}$$

• parameter z' and x' are

$$z'(x') = -b\sqrt{1 - \frac{x'^2}{a^2}}, \qquad x'(x) = \frac{-n + \sqrt{n^2 - 4mt}}{2m}$$

with

$$m = \cos \phi^2 + \frac{b^2}{a^2} \sin \phi$$
$$n = -2\cos \phi \left(x + x_0 \cos \phi + z_0 \sin \phi\right)$$
$$t = (x + x_0 \cos \phi + z_0 \sin \phi)^2 - b^2 \sin^2 \phi$$

Energy Density & E-Field at Focal Plane

Peek into VirtualLab Fusion

Structure Height Discontinuities Scal	ing Coating	Periodization
Surface Specification		
Algorithms		
Snippet for Height Profile		Zedit Validity:
O Numerical Gradient Calculation		
User-Defined Gradient Calculatio	n	🥒 Edit Validity: 🕑
Parameters		
Angle		0.172°
F1		50 m
F2		400 mm
12		
	Source Coo	de Editor
	Source Code	e Global Parameters Snippet Help Advanced Settings
	50	********** INSERT YOUR CODE HERE ***********
lovible definition o	f 51	***************************************
	53	<pre>double a = (F1 + F2) / 2;// distance from center to</pre>
stomized interface	54	double c = Math.Sqrt(F1 * F1 + F2 * F2 - 2 * F1 * F double b = Math Sqrt(2 * 2 - 5 * c))// distance free
	56	double b = Math.sqrt(a - a - c - c);// distance fro
	57	<pre>double x0 = (F1 * F1 - F2 * F2) / (4 * c);// (x0, z</pre>
	58	double z0 = -b * Math.Sqrt(1 - x0 * x0 / (a * a));
	60	<pre>// now is to shift and rotate the coordinate the mi</pre>
	61	<pre>double phi = Math.Atan(-b * b * x0 / (a * a * z0)); double sin = Math Sin(abi);</pre>
	63	double sin = Math.Sin(phi); double cos = Math.Cos(phi);
	64	
	65	<pre>double m = b * b * sin * sin / (a * a) + cos * cos;</pre>
	66	double n = $-2 * \cos * (x + x0 * \cos + z0 * \sin);$
	68	double $x = (x + x0 - \cos + x0 - \sin)^{-1} (x + x0 - \cos - \cos - \sin)^{-1} (x + x0 - \cos - $
		<pre>double z1 = -b * Math.Sqrt(1 - x1 * x1 / (a * a));</pre>

lit Curved Surface	: Component	<
21	Basal Positioning Isolated Positioning Position Information (Absolute)	
Coordinate Systems	Position this Element's Input Axes with Respect to Reference Element 4: Aperture Reference Output Coordinate System T Relative Distance on Axis Delta Z 0 mm	
E Structure	Lateral Shift Delta X 0 mm Delta Y 0 mm Inclination / Rotation 0	
Solver	Orientation Definition Type Spherical Angles ✓ (iii) Z-Axis Direction Definition Angle / Axis Value Theta (Spherical) ✓ 89.828° Phi (Spherical) ✓ -90°	
Channel Configuration	Rotation About Z-Axis Z-Axis Rotation Angle 90°	

convinient definition of position and orientation

Workflow in VirtualLab Fusion

- Set up input Gaussian field
 - Basic Source Models [Tutorial Video]
- Set the position and orientation of components
 - LPD II: Position and Orientation [Tutorial Video]
- Programmable the elliptical interface
 - How to Work with the Programmable Interface & Example (Spherical Surface) [Use Case]

mable Surface					×	
eight Discontinuities	Scaling	Coating	Periodization			
ecification						
IS						
for Height Profile			🥖 Edit	Validity: 🕑		
erical Gradient Calcula	tion					
Defined Gradient Calc	ulation		🥖 Edit	Validity: 🥑		
rs						
				0.172°]	
				50 m		
				400 mm]	
		Source Coo	le Editor			
		Source Code	Global Parameters	Snippet Help Advanced Settin	ngs	
		50 51 _	**********	INSERT YOUR CODE HE	RE ************************************	Aperture Diamete Aperture Diamete x (double)
		52	devilation of the			y [double]
		53	double a = ((F1 + F2) / 2; // d1s'	tance from center to	Angle [double]
		55	double b = M	Math.Sqrt(a * a - c	<pre>* c);// distance from</pre>	F2 [double]
		57	double x0 =	(F1 * F1 - F2 * F2)	/ (4 * c):// (x0, 70	
		58 59	double z0 =	-b * Math.Sqrt(1 -	x0 * x0 / (a * a));	
		60	// now is to	shift and rotate t	he coordinate the mir	
		61	double phi =	Math.Atan(-b * b *	x0 / (a * a * z0));/	
		62	double sin =	Math.Sin(phi);		
		63	double cos =	<pre>Math.Cos(phi);</pre>		
		64				
		65	double m = b	* b * sin * sin /	(a * a) + cos * cos;	
		66	double n = -	2 * cos * (x + x0 *	cos + z0 * sin);	
		67	double t = (x + x0 * cos + z0 *	sin) * (x + x0 * cos	
			double x1 =	(-n + Math.Sqrt(n *	n - 4 * m * t)) / (2	
			double z1 =	-b * Math.Sqrt(1 - :	x1 * x1 / (a * a));	

Edit Program

Surface Sp Algorithr Snippet

Num
 User
 Paramete
 Angle

F1 F2

VirtualLab Fusion Technologies

title	Grazing-Incidence Focusing Mirrors for X-Ray Beams
document code	XRAY.0004
document version	2.0
software edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	- Single Grating Interferometer for X-Ray Imaging