

Effects of Mirror Coating on Pulse Characteristics

Abstract

With the advent of new technologies in the area of ultrafast optics, it has become an ever more important task to deliver ultrashort pulses to their target. It is common, to use mirrors with metallic or dielectric layer-based coatings for that purpose. Therefore, an investigation of occurring effects on the characteristics of the propagated pulse which are introduced by the chosen type of mirror, are of particular interest. In this use case, we illustrate this effect by comparing the pulse propagation in systems with silver mirrors and high-reflection (HR) dielectric coated mirrors as examples.

Modeling Task

gaussian wave (spatial)

• 2mm × 2mm diameter

gaussian pulse (temporal)

- 632.8nm central wavelength
- 30fs & 100fs pulse duration

pulse detector

- temporal envelope at point
- peak amplitude
- full width half maximum (FWHM)

<u>task</u>

Investigate effects of different mirror types on pulse parameters (peak amplitude and pulse duration) after propagation through the system.

mirrors:

a) fused silica with silver coating

b) fused silica withhigh-reflective (HR)dielectric coating(alternating titaniumand silicon dioxide)

System Building Blocks – Components

Edit Stratified Media	Component					
Coordinate Systems Position / Orientation	Component Reference Plane Surfa Coad Aperture Coating Name	Surface (all Ch	• No	20 mm ×		
Man	Edit Paramet	ers of Coating tion Process Index: 1 2 3 4 :		Coating Layers	e	For the coated employ the St <i>Component</i> , s a fast solution invariant layer
	Index	Thickness	Distance	Material	^	
	1	107.31 nm	107.31 nm	Silicon Dioxide-SiO2-ThinFilm		dielectric coat
	2	69.392 nm	176.7 nm	Titanium_Dioxide-TiO2-ThinFil	lm	of alternating
	3	107.31 nm	284.01 nm	Silicon_Dioxide-SiO2-ThinFilm		titanium dioxid
	4	69.392 nm	353.4 nm	Titanium_Dioxide-TiO2-ThinFil	Im	
	5	107.31 nm		Silicon_Dioxide-SiO2-ThinFilm		silicon dioxide
	6	69.392 nm		Titanium_Dioxide-TiO2-ThinFil		
	7	107.31 nm	637.42 nm	Silicon_Dioxide-SiO2-ThinFilm	Y	selected from
	Append		Insert	Delete	Layer Tools 🔻	catalog of Virt

d mirrors we tratified Media since it provides for *x, y*r stacks. An HR ting, consisting layers of de (TiO_2) and $e(SiO_2)$, is the coating tualLab Fusion.

For the propagation through the component, we use the *Layer Matrix* field solver.

dit Stratified Media	Component	×
2 2	Solver Sampling	
	Component Solver Layer Matrix [S-Matrix] 🗸 🗸 Edit	
Coordinate Systems	The layer matrix solver works in the spatial frequency domain (k domain). It consists of	
×.	 an eigenmode solver for each homogeneous layer and an S-matrix for matching the boundary conditions at all surfaces. 	
Position / Orientation	The eigenmode solver computes the field solution in the k domain for the homogeneous medium in each layer. The S-matrix algorithm calculates the response of the whole layer system by matching the boundary conditions in a recursive manner. It is well-known for its unconditional numerical stability since, unlike the traditional transfer matrix, it avoids the exponentially growing functions in the calculation steps. Learn more about this solver.	
Solver Channel Configuration Fourier Transforms	$E_{\perp,+}^{\text{in}}$ S_{++} $E_{\perp,+}^{\text{out}}$ $E_{\perp,+}^{\text{out}}$ $E_{\perp,-}^{\text{in}}$ $E_{\perp,-}^{\text{in}}$	
Validit	y: OK Cancel Help	

System Building Blocks – Detectors

The *Pulse Evaluation Detector* automatically calculates the electromagnetic field in wavelength and time domain at a given point, line, or plane for 1D, 2D or 3D evaluations, respectively.

It provides various output options, e.g. maximum or FWHM of the squared amplitude of the pulse.

1 7	Detector Window and Resolution Detector Function	
	Pulse Evaluation Optical Path Length Evaluation	
ordinate Systems	Vectorial Component to Evaluate	
,	Ex-Component Ey-Component Ez-Component	
1	General Pulse Evaluation Parameters	
	Oversampling Factor 10	
osition / ientation	Exclude Time Shift Extend Time Window	
	Fit Method for Evaluation $$ Fit III: Time Shift with Dispersion $$ $$ $$	
etector	Pulse at Point (1D) Pulse at Line (2D) Pulse (3D)	
ameters	Evaluation of Pulse at Point (1D)	
F F-1	Position (x,y) 0 mm 0 mm Copy From	m
ourier	Additional Evaluation Minimum Maximum Full Width of Half Maxi	mum

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Value
1. source	Plane Wave source with Gaussian Pulse Spectrum	truncated ideal plane waves with Gaussian spectrum
2. mirror	Stratified Media component	layer matrix
3. detector	Pulse Evaluation Detector	spectrum & temporal shape

Ray & Field Tracing Result Impressions

Pulse Evaluations – Silver Mirror Amplitude

After reflection at four silver mirrors, the amplitude of the pulse decreases significantly. The decrease is proportional to the number of used mirrors.

Pulse Evaluations – Silver Mirror FWHM

The pulse duration is stable after interacting with multiple silver-coated mirrors as metallic surfaces exhibit low dispersive effects over a wide range of frequencies (due to very shallow skin depth).

Pulse Evaluations – Dielectric Mirror Amplitude

Measurements show, that the multilayer dielectric coating used, can reach high reflectivity and low dispersion effects for a specific wavelength.

335-337 (1984)

Pulse Evaluations – Dielectric Mirror FWHM

Comparison of Final Pulse for the Different Mirror Types

Conclusion for 100fs Pulse

- As metallic surfaces are known to provide low dispersive effects overall, the silver coating maintains the pulse duration quite well, but exhibits a lower reflectivity.
- The HR dielectric TiO₂-SiO₂ coating keeps the peak and FWHM quite stable, as dispersion effects are nearly zero when used for its design frequency range.

Conclusion for 30fs Pulse

• For the shorter pulse duration, the investigated HR dielectric coating yields a broadened FWHM together with a decreased peak amplitude.

100fs pulse

Mirror Type	Peak A ²	FWHM
reference	1.80 V/m	101 fs
with silver coating	1.50 V/m	101 fs
with dielectric coating	1.70 V/m	101 fs

30fs pulse

Mirror Type	Peak A ²	FWHM
reference	1.80 (V/m) ²	30.1 fs
with silver coating	1.50 (V/m)²	30.1 fs
with dielectric coating	1.62 (V/m)²	32.1 fs

VirtualLab Fusion Technologies

title	Effects of Mirror Coating on Pulse Characteristics
document code	USP.0009
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 Pulse Broadening in Dispersive Media Femtosecond Pulse Propagation through Dispersive Seawater Grating Stretcher for Ultrashort Pulses