

Conical Refraction in Biaxial Crystals

Abstract

When circularly polarized light propagates through a biaxial crystal along one of its optic axes, the transmitted field evolves into a cone, a phenomenon which is known as conical refraction. Several applications have been developed based on this effect, such as Bessel beam generation and optical tweezers. With the fast-physical-optics simulation technology in VirtualLab Fusion, conical refraction from a KGd crystal is demonstrated.

Modeling Task

3

System Building Blocks – Source

Polarization Mod	e Selection	Selection Sampling Ray Selection		election	
Basic Parameters Spectral Parameters		eters	Spatial Par	ameters	
Generate Cross Section	n				
	Hermite Gaussian Mode 🗸 🗸				
Order		0		0	
M^2 Parameter		1		1	
Reference Wavelength (V	acuum)		632 nm	~	
Select Achromatic Param	eter:				
Waist Radius (1/e^2)		800 µm x		800 µm	
O Half-Angle Divergenc (1/e^2)	e 0.014403	89568 <u>5</u> °	0.0144039568 <u>5</u> °		
Rayleigh Length	3.18222	4379 <u>m</u>	3.1822	24379 m	
Astigmatism					
Offset between y- and x-l	Plane			0 mm	
Copy from Calculator	Copy to x-	and y-Valu	es		

A linearly polarized Gaussian field, with a wavelength of 632 nm, is employed as the input. It first passes through a quarter-wave plate, which converts the linear polarization to circular. This effect is included in the source model directly.

System Building Blocks – Biaxial KGd Crystal

Parameters follow from C. F. Phelan et al., Opt. Express 17, 12891-12899 (2009)

Simulation Results

Summary – Components...

of Optical System	in VirtualLab Fusion	Source Model/Component Solver
1. Source	Gaussian Source	
2. Lens	Ideal Lens	
3. KGd Crystal	Crystal Plate	Layer Matrix [S-Matrix]
4. Detector	Camera Detector	-

Workflow in VirtualLab Fusion

- Set up input field
 - Basic Source Models [Tutorial Video]
- Construct real components using surfaces
- Set up Biaxial Crystal
 - Optically Anisotropic Media in VirtualLab Fusion [Use Case]
- Define position and orientation of components
 - LPD II: Position and Orientation [Tutorial Video]

vermicion or busin r osh	ion and Orientation	\times
Definition Type	Relative Definition $\qquad \qquad \lor$	
Measurement from	Beam splitter (ideal) #1; CS of Channel '1'	
to	Input Channel Coordinate System 🗸 🧴	
Translation Parameters	Orientation Parameters	
Center Point of Rotati	ons	
Reference Point to be Used as Center Point	Reference Point of Input Channel	
Orientation Angles		
Orientation Definiti	on Type Cartesian Angles ~ (:::)	
Z-Axis D	irection Definition	
	Angle / Axis Value	
Alp	ha ~ -45°	
Swap Order ⊅ Bet	a v O°	
	Ahout 7-Avis	
Rotation	/ Boar 2 / Wa	
Rotation Z-A	kis Rotation Angle 0°	
Rotation Z-A:	xis Rotation Angle 0°	
Rotation Z-A:	xis Rotation Angle 0°	
Rotation Z-A:	xis Rotation Angle 0°	

VirtualLab Fusion Technologies

title	Conical Refraction in Biaxial Crystals
document code	CRO.0001
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Application Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Polarization Conversion in Uniaxial Crystals