

Compound Refractive Lens for X-Ray Focusing

Abstract

Refraction of x-rays by a single lens is usually small, but a compound lens (consisting of tens or hundreds of individual cylindrical lenses arranged in a linear array) can gradually focus x-rays one- or two-dimensionally. The focal length can be controlled by the number of the lenses, i.e., the more lenses are used, the shorter focal length is achieved. Following the paper of Snigirev et al. [Applied optics, 1998, 37(4): 653-662], this use case demonstrates 1D and 2D xray focusing by a compound refractive lens in VirtualLab Fusion.

Modeling Task

system parameters from Snigirev A, et al. Applied optics, 1998, 37(4): 653-662

System Building Blocks – Components

- The Lens System Component allows the definition of multiple surfaces and the media in between according to the user specifications. By setting two cylindrical surfaces with contrary sign on the Radius of Curvature it is possible to generate the cylindrical lenses used in this kind of component.
- This lens modeling is not apt for illumination of the full curvature (including the area where the surface becomes flat).

But this is no limitation for this simulation at all, as only a small part of the lens curvature is illuminated.

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver
1. Source	Plane Wave Source	Truncated Ideal Plane Wave
2. Compound lens	Lens System Component	Local Plane Interface Approximation (LPIA)
3. Detector	Spot Size Detector	Second-Momentum theory
4. Detector	Camera Detector	Energy density

Simulation Results

1D-Simulation: 5 Cylindrical Lens

1D-Simulation: 10 Cylindrical Lens

1D-Simulation: 50 Cylindrical Lens

2D-Simulation: 5 Cylindrical Lens

- To focus the x-ray beam in both xand y-direction the compound lens can be build up by an horizontally (H) and vertically oriented cylindrical lenses.
- Here we simulated an equal number of both types.

10 (H) and 10 (V) air cylindrical lens

VirtualLab Fusion Technologies

title	Compound Refractive Lens for X-Ray Focusing	
document code	XRAY.0004	
version	1.0	
edition	VirtualLab Fusion Basic	
software version	2021.1 (Build 1.180)	
category	Application Use Case	
further reading	 Single Grating Interferometer for X-Ray Imaging Grazing-Incidence Focusing Mirrors for X-Ray Beams 	