Modeling of Foucault Knife-Edge Test
Abstract

Since 1858 the Foucault knife-edge test has been a simple and inexpensive method to determine the properties of a concave shaped mirror. As the name suggests, in this test, a knife’s edge (e.g. a razor blade) is held in the path of the beam, close to the expected focal point, to obscure half of the beam. The transmitted field is then again collimated before evaluation. The resulting pattern provides an indication of the shape of the mirror used. Furthermore, if the position of the knife-edge is varied along the optical axis, the resulting light pattern at the detector plane will also change. This behavior enables the user to precisely determine the position of the focal point of the curved mirror.
Modeling Task

concave mirror
- 20mm × 20mm diameter
- ideal reflecting material
- two shapes:
 a) parabolic mirror: 25mm back focal length
 b) spherical mirror: 50mm focal length

knife-edge aperture
- 1 mm stop
- position to be varied

spherical wave
- 532nm central wavelength
- 20mm × 20mm diameter
- 50mm distance to point source

idealized collimation
- 50mm focal length

light distribution
The Off-Axis Parabolic Mirror (Wedge Type) Component provides the definition of a parabolic mirror. While it is possible to select any material for the bulk of the mirror, and to add a coating to the reflective surface, for the purposes of this use case an idealized high reflective material is chosen. This also makes the need for an additional high-reflection coating unnecessary.
System Building Blocks – Spherical Mirror

By using the Curved Surface Component, a single, arbitrarily shaped surface can be added to an optical system. In this case, a Conical Surface is loaded from the surface catalog, to model the spherical mirror.
The knife-edge is modeled by a *Stop* that can be moved along and perpendicular to the optical axis (z-axis).
An idealized lens function is applied in the system to ensure the collimation of the field after the knife-edge. Therefore, the surfaces and materials of the lens are not considered in this case. The lens instead provides an ideal collimation function for a selected wavelength and focal length.

Learn more about this function via:

➡️ Idealized Lens Functions
Summary of Model

<table>
<thead>
<tr>
<th>Optical System</th>
<th>Elements in VirtualLab Fusion</th>
<th>Model/Solver/Detected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. source</td>
<td>Spherical Wave</td>
<td>point source</td>
</tr>
<tr>
<td>2. concave mirror</td>
<td>Off-axis Parabolic Mirror/Curved Surface</td>
<td>Local Plane Interface Approximation</td>
</tr>
<tr>
<td>3. knife-edge tester</td>
<td>Stop</td>
<td>transmission function</td>
</tr>
<tr>
<td>4. lens</td>
<td>Ideal Lens (Lens Equation)</td>
<td>idealized collimation</td>
</tr>
<tr>
<td>5. detector</td>
<td>Camera Detector</td>
<td>energy density measurement</td>
</tr>
</tbody>
</table>
Parabolic Mirror: Scan along Z-axis

If the knife-edge is located very close to the focus, diffractive effects shape the light to the expected Foucault Donut form. The larger the distance of obstacle and focus become, the less influence the diffractive effects have.

Knife’s aperture is positioned…

… 1.25mm before focus
… 750µm before focus
… in focus
… 750µm after focus
… 1.25mm after focus
In case, the aperture is placed directly in the focus, the light pattern generated by the setup depends highly on the shape of the used concave mirror. In the case of a parabolic mirror, a so-called donut-shaped mode is exhibited. This information can be used to characterize the mirror.

Similar to the case of the parabolic mirror, diffractive effects only take the reins if the knife edge is placed directly in the focus. If slightly shifted, the obstacle will just cause a truncation of the field, also in the final detector plane.
For ideal spherical mirrors, the diffractive effects generate a ring like structure when the aperture is placed in the focus. But as the intensity is magnitudes lower than when the aperture is moved slightly off focus, it will appear as if the light has vanished in this case.
VirtualLab Fusion Technologies

Prisms, plates, cubes, ...

Lenses & freeforms

Apertures & boundaries

Gratings

Diffractive, Fresnel, meta lenses

HOE, CGH, DOE

Micro lens & freeform arrays

SLM & adaptive components

Diffractive beam splitters

Waveguides & fibers

Scatterer

Diffusers

Nonlinear components

Free space

Crystals & anisotropic components

Field Solver

idealized component
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Modeling of Foucault Knife-Edge Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>Misc.0093</td>
</tr>
<tr>
<td>document version</td>
<td>1.0</td>
</tr>
<tr>
<td>software edition</td>
<td>VirtualLab Fusion Basic</td>
</tr>
<tr>
<td>software version</td>
<td>2021.1 (Build 1.180)</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
<tr>
<td>further reading</td>
<td>- Observation of the Poisson Spot</td>
</tr>
<tr>
<td></td>
<td>- Circularly Serrated Aperture for Beam Apodization</td>
</tr>
<tr>
<td></td>
<td>- Simulation of Reflective Pyramid Wavefront Sensor</td>
</tr>
</tbody>
</table>