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Simulation of Reflective Pyramid Wavefront Sensor



Abstract

Wavefront sensors that use a pyramid shaped
prism or reflector (PyWFS, for pyramid wavefront
sensor) are known for their high contrast and better
wavefront sensitivity compared to conventional
Shack-Hartmann sensors, e.g., for the search for
extrasolar planets in astronomy. Hence, this type of
wavefront sensors are used in special telescopes
(e.g., at Keck Observatory), usually in the infrared
(IR) spectral range. A PyWFS typically consists of
a four-sided prism, re-imaging optics, and an
appropriate detector. In this example, we show the
modeling of the characteristic light pattern of such
a pyramid-shaped prism for different types of
aberrations, by applying VirtualLab Fusion’s fast
physical optics Field Tracing technology.



https://en.wikipedia.org/wiki/W._M._Keck_Observatory

Modeling Task

light distribution in
200mm distance
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light distribution
in focus with/without
aberrations?

plane wave
*  8mm x 8mm diameter
+ 532nm wavelength

*  with aberration ideal focusing lens
« without aberration + 200mm focal distance

1
- \

\ \~-_y

<

-
‘ \\
\

pyramid (4-sided)

+ 1° angle (exaggerated for illustration)
*  5mm side length

+ perfect reflecting material




System Building Blocks — Source & Detectors

Zernike & Seidel |dealized Lens [Focusing
Plane Wave Aberrations Made]
D = = O = = D
0 1 9
lZ:Dmm| lZ:4DDmm|

Pyramid

L] >
1 2
.Z:ZDDmmrt .Z:‘Imm|

Backside of Pyramid

ﬁin:ra Detector %:n:ra Detector|
608 o 607 9

Edit Plane Wave |z:200mm| (z200mm |
Polarization Mode Selection Sampling Ray Selection
Basic Parameters spectral Parameters Spatial Parameters
Medium at Source Flane
Airin Homogensous Medium
e
Source Field: Longitudinal and Lateral Offset
Distance to Input Plane 0 mm plane wave
Lateral Offset 0 mm| | omm

Input Field: Position, Size and Shape

Automatic Setting

(®) Manual Setting Apply Lateral Offset of Source Field

Shape (C) Rectangular (@) Elliptic

Diameter | Bmm| X | Bmm|
(@) Relative Edge Width
(O Absolute Edge Width 400 pm

A plane wave is used as source. Due to the absence of
aberrations in this model, a Zernike & Seidel Aberrations
element is added (pls. see slide 7).

In the shown setup, the beam is focused on the tip of the

pyramidal-shaped prims and reflected towards the detectors
(focal plane and image plane).

ideal focusing lens pyramid (4-sided)

Zernike & Seidel
Aberrations component




System Building Blocks — Idealized Focusing Lens

e e ssedel fldedzed ters Focsing | For the purposes of concentrating on the main effects, the
L——O» i L) focusing lens is simplified with an idealized lens model, which
? - . \ e\ e provides an idealized lens function.
\ia:nera Detector .\l\-“'\_\(.iamera Detector
I I Parameter Description

DesignWavelength | Design wavelength given in vacuum

Learn more about this function via: DesignNin Rfelfractive index of the design working medium in front
, : of lens
[ Idealized Lens Functions.

Refractive index of the design working medium behind

DesignNout
lens
FocalLength Design focal length
Lens mode options:
LensTvoe 0: F-TanTheta mode
yp 1: F-SinTheta mode
2. F-Theta mode
OutputMaterial Material on the transmission side



https://www.lighttrans.com/index.php?id=2107
https://www.lighttrans.com/index.php?id=2107

System Building Blocks — Pyramid Prism
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In order to model the reflective pyramid wavefront sensor, a
four-sided prism is constructed. The Truncated Pyramid

Surface is utilized as front side, and a planar interface as the
backside of the prism, with an ideal high reflectance material

sandwiched in between.
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3D structure of the pyramid surface
(height exaggerated for illustration)




System Building Blocks — Aberration Component
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Summary of Model

plane wave ideal focusing lens

9 Zernike & Seidel
Aberrations component

e pyramid (4-sided)

Optical System

Elements in VirtualLab Fusion

Model/Solver/Detected Value

1. source

Plane Wave source

truncated ideal plane waves

2. aberrations

Zernike & Seidel Aberrations Component

Zernike standard polynomial

3. focusing lens

|dealized Lens [Focusing Mode]

idealized focusing

4. pyramid prism

Truncated Pyramid surface & Plane Interface

Local Plane Interface Approximation
& Fresnel Matrix

5. detector

Camera Detector

energy density measurement




Field Tracing Result

plane wave ideal focusing lens

Zernike & Seidel
Aberrations component
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focal plane image without aberration
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Simulation of Aberration Effects on the Wavefront

focused
image

By specifying the coefficients of the
aberrations in the aberration
component, different types of
aberrations can be modeled. In this
example, we applied three first-
order aberrations: tilt, defocus and
astigmatism. The aberrations have
a distinct impact on the size and
shape of the focus.

reflected
image

After re-imaging the light, the
pyramid wavefront sensor reveals
its beneficial sensitivity: Compared
to conventional sensors, e.g.,
Shack-Hartmann sensors, the
PYWFS not only detects the change
of the wavefront, but also makes it
easy to distinguish the type of
aberration from the resulting
quadrant-divided pattern.
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from left to right: field tracing images with tip-tilt, defocus, astigmatism aberration
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VirtualLab Fusion Technologies

pyramid (4-sided)

2 1

ideal focusing lens

plane wave

Zernike & Seidel
Aberrations component

nonlinear free
crystals & components SPaC€  nrismg,
anisotropic plates,
components @ cubes, ...
waveguides lenses &
& fibers e freeforms
~ i apertures &
scatterer Field boundaries
Solver
diffusers ( gratings
diffractive diffractive,
beam Fresnel, meta
splitters lenses
SLM&  micro lens & HOE, CGH,
adaptive ¢ oaform DOE
components arrays

# 1dealized component
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