Simulation of Reflective Pyramid Wavefront Sensor
Wavefront sensors that use a pyramid shaped prism or reflector (PyWFS, for *pyramid wavefront sensor*) are known for their high contrast and better wavefront sensitivity compared to conventional Shack-Hartmann sensors, e.g., for the search for extrasolar planets in astronomy. Hence, this type of wavefront sensors are used in special telescopes (e.g., at *Keck Observatory*), usually in the infrared (IR) spectral range. A PyWFS typically consists of a four-sided prism, re-imaging optics, and an appropriate detector. In this example, we show the modeling of the characteristic light pattern of such a pyramid-shaped prism for different types of aberrations, by applying VirtualLab Fusion’s fast physical optics Field Tracing technology.
Modeling Task

- **plane wave**
 - 8 mm x 8 mm diameter
 - 532 nm wavelength
 - with aberration
 - without aberration

- **ideal focusing lens**
 - 200 mm focal distance

- **pyramid (4-sided)**
 - 1° angle (exaggerated for illustration)
 - 5 mm side length
 - perfect reflecting material

light distribution in 200 mm distance with/without aberrations?

light distribution in focus with/without aberrations?
A plane wave is used as source. Due to the absence of aberrations in this model, a Zernike & Seidel Aberrations element is added (pls. see slide 7).

In the shown setup, the beam is focused on the tip of the pyramidal-shaped prims and reflected towards the detectors (focal plane and image plane).
For the purposes of concentrating on the main effects, the focusing lens is simplified with an idealized lens model, which provides an idealized lens function.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DesignWavelength</td>
<td>Design wavelength given in vacuum</td>
</tr>
<tr>
<td>DesignNin</td>
<td>Refractive index of the design working medium in front of lens</td>
</tr>
<tr>
<td>DesignNout</td>
<td>Refractive index of the design working medium behind lens</td>
</tr>
<tr>
<td>FocalLength</td>
<td>Design focal length</td>
</tr>
<tr>
<td>LensType</td>
<td>Lens mode options: 0: F-TanTheta mode 1: F-SinTheta mode 2: F-Theta mode</td>
</tr>
<tr>
<td>OutputMaterial</td>
<td>Material on the transmission side</td>
</tr>
</tbody>
</table>
In order to model the reflective pyramid wavefront sensor, a four-sided prism is constructed. The *Truncated Pyramid Surface* is utilized as front side, and a planar interface as the backside of the prism, with an ideal high reflectance material sandwiched in between.

![3D structure of the pyramid surface (height exaggerated for illustration)](image-url)
A Zernike & Seidel Aberrations component is applied to superimpose the aberrations on the field. In the actual experiment the aberrated wavefront would be unknown; here, to demonstrate the principle, we simply specify the coefficients of different types of aberrations.

specify the parameters to include aberrations
Summary of Model

Optical System

<table>
<thead>
<tr>
<th>1. source</th>
<th>Plane Wave source</th>
<th>truncated ideal plane waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. aberrations</td>
<td>Zernike & Seidel Aberrations Component</td>
<td>Zernike standard polynomial</td>
</tr>
<tr>
<td>3. focusing lens</td>
<td>Idealized Lens [Focusing Mode]</td>
<td>idealized focusing</td>
</tr>
<tr>
<td>4. pyramid prism</td>
<td>Truncated Pyramid surface & Plane Interface</td>
<td>Local Plane Interface Approximation & Fresnel Matrix</td>
</tr>
<tr>
<td>5. detector</td>
<td>Camera Detector</td>
<td>energy density measurement</td>
</tr>
</tbody>
</table>

The diagram illustrates the sequence of elements in the optical system. Each element corresponds to a row in the table.

1. **source**: Plane Wave source
2. **aberrations**: Zernike & Seidel Aberrations Component
3. **focusing lens**: Idealized Lens [Focusing Mode]
4. **pyramid prism**: Truncated Pyramid surface & Plane Interface
5. **detector**: Camera Detector
Field Tracing Result

reflected image without aberration

focal plane image without aberration
By specifying the coefficients of the aberrations in the aberration component, different types of aberrations can be modeled. In this example, we applied three first-order aberrations: tilt, defocus and astigmatism. The aberrations have a distinct impact on the size and shape of the focus.

After re-imaging the light, the pyramid wavefront sensor reveals its beneficial sensitivity: Compared to conventional sensors, e.g., Shack-Hartmann sensors, the PyWFS not only detects the change of the wavefront, but also makes it easy to distinguish the type of aberration from the resulting quadrant-divided pattern.

from left to right: field tracing images with tip-tilt, defocus, astigmatism aberration
VirtualLab Fusion Technologies

Plane wave

Ideal focusing lens

Pyramid (4-sided)

Zernike & Seidel
Aberrations component

Field Solver

1. Crystals & anisotropic components
2. Lenses & freeforms
3. Apertures & boundaries

Free space

Diffusers

Diffractive beam splitters

SLM & adaptive components

Nonlinear components

Waveguides & fibers

Scatterer

Gratings

Diffractive, Fresnel, meta lenses

VirtualLab Fusion Technologies
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Simulation of Reflective Pyramid Wavefront Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>MISC.0092</td>
</tr>
<tr>
<td>document version</td>
<td>1.0</td>
</tr>
<tr>
<td>software edition</td>
<td>VirtualLab Fusion Basic</td>
</tr>
<tr>
<td>software version</td>
<td>2021.1 (Build 1.180)</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>

Further Reading

- [How to Work with the Programmable Interface & Example (Spherical Surface)](www.LightTrans.com)
- [Analyzing High-NA Objective Lens Focusing](www.LightTrans.com)
- [Programming a Truncated Cone Surface](www.LightTrans.com)
- [Modeling of Foucault Knife-Edge Test](www.LightTrans.com)