Technology Whitepaper

Connecting Solvers by Master Channels

WYROWSKI

VirtualLab FUSION

FAST PHYSICAL OPTICS SOFTWARE

Author: Frank Wyrowski (August 5, 2021)

VirtualLab Fusion enables fast physical-optics system modeling by connecting different solvers in-stead of applying one universal solver to the entire system [Kuhn2013]. This technology is enabled by a channel concept. The Light Path Finder in VirtualLab Fusion (see <u>Step-by-Step Field Tracing with Modeling Analyzer</u>) searches for **channel surfaces** with finite extent which are placed in space. The channel surfaces define the entrance into components and detectors. Often the surfaces form real interfaces between two media, but that is not required. They can be mathematical surfaces only with surface add-ons.

Channel surfaces are restricted to charts of height profiles. General surfaces can be built by combining them. In VirtualLab Fusion the Single Surface Components form the most basic type of com-ponents. They come with a planar or curved channel surface and optional surface add-ons like coat-ings, stacks, and functions. The single surface may also constitute an optical interface between two media. Then we must assume that light is blocked outside of the domain of the surface to obtain a consistent media transition in space.

The domain of the channel surface has rectangular or elliptic shape and forms the **master channel region**. Fig. 1 shows the dialogue of the settings for a channel surface.

M	Solid Surface A	dd-Ons		
Coordinate	Component Sur Plane Surface	face		
Systems	🖉 Load		/ Edit	View
Position / Drientation	Domain: Size an Shape	d Shape Rectange	ular O Elliptic	
	Size		20 mm ×	20 mm
Solver	🚰 Load		🥖 Edit	Q View
Solver	Effect on Field C Field Passes	Plane Surface		
Solver	and the second second	Plane Surface		
→ → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	O Field Passes	Plane Surface		
	O Field Passes	Plane Surface		

Fig. 1: The channel surface of a single surface component, here the microlens array component, is specified on the *Structure* tab of the component dialogue.

LightTrans International UG, Kahlaische Straße 4, 07745 Jena, Germany Phone +49.3641.53129-0, info@lighttrans.com, www.lighttrans.com

Light may hit the channel surface from both sides. Relative to the normal vector of the surface that defines (+) and (-) directions. Per direction a field response operator, which is associated with the channel surface and its add-ons, provides a reflected and a transmitted field response. Thus, we obtain four **master channels** which are associated with any channel surface. They are the transmission channels (+/+) and (-/-) and the reflection channels (+/-) and (-/+).

The master channels can be configured in any component and by that the degree of non-sequential modeling can be fully customized if the option *Manual Settings* is selected in the *Channel Configuration* as it is shown in Fig. 2 (Ribbon) and Fig. 3 (Property Browser).

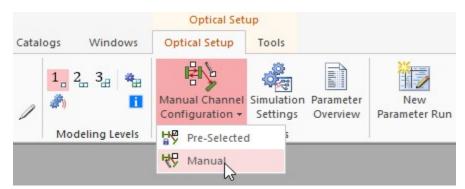


Fig. 2: The channel configuration has the two options Pre-Selected and Manual.

R,	7: Op	tical Setup Editor #7 (Optical Setu	lb) _*		
Ge	neral	Simulation Settings			
~	Gene	eral			
	Proc	ess Logging Level	None		
~	Environment				
	Syste	em Temperature	20 °C		
~	Field	Tracing			
	Oversampling Factor Gridless Data		1		
	Oversampling Factor Gridded Data		1		
	Fourier Transform Selection Accuracy		1		
	Chan	nel Configuration Option	Manual 🗸		
~	Man	ual Channel Configuration	Pre-Selected		
	Ener	gy Threshold	Manual		
	Maxi	mum Level	100 10		
	Chan	nel Resolution Accuracy	1		
	Show Only Paths That Hit a Detector in 3E True				
Ch	annel	Configuration Option			

Fig. 3: The channel configuration can be selected in the Property Browser for each system.

LightTrans International UG, Kahlaische Straße 4, 07745 Jena, Germany Phone +49.3641.53129-0, info@lighttrans.com, www.lighttrans.com

Figure 4 shows an example of the channel configuration of a lens with two surfaces. The shown configuration includes reflections and by that the investigations of ghost images in ray tracing and physical optics modeling, e.g., the effect of multiple reflections on the PSF/MTF.

t Spherical Lens (Component							
An	Surface	+/+	+/-	-/-	-/+			
	All Surfaces							
Coordinate	Surface #1 (Plane Surface)	\checkmark						
Systems	Surface #2 (Conical Surface)		\checkmark					
Position / Orientation Structure								
Fourier Transforms								
J 🛐 Validit	v: 🖸				01	(Cancel	Help

Fig. 4: Channel configuration for a lens with two surfaces for investigation of ghost image effects.

Sources

 M. Kuhn, F. Wyrowski & C. Hellmann, 'Non-sequential Optical Field Tracing', in Thomas Apel & Olaf Steinbach, ed., 'Advanced Finite Element Methods and Applications', Springer Berlin Heidelberg, pp. 257-273 (2013); https://doi.org/10.1007/978-3-642-30316-6_12

