Automatized Detector Positioning by using Parameter Coupling
In this example, the focus (PSF) of an F-theta objective is investigated for certain angles of incidence. In order to avoid the superfluous computational effort introduced by the shift of the resulting foci with off-axis illumination, the detector position is shifted according to the main propagation direction of the light. VirtualLab’s Parameter Coupling tool is applied to automatically handle this adjustment of the detector position.
Modeling Task

F-theta objective
- effective focal length
 \(f_{\text{eff}} = 100.18\text{mm} \)
- from patent
 USP 4436383

source: plane wave
- wavelength: 488 nm
- beam diameter: 4 mm x 4 mm
- theta: 0, ±15°

evaluation of focus at variable position
Parameter Coupling allows the user to define the variation of the desired system parameters through a small script “snippet”.

As a result, any change of the value of the independent input parameter will simultaneously result in a change of the dependent (coupled) parameter.

In this example, we couple the lateral position of the desired detector to coincide with the position of chief ray.
Parameter Coupling Procedure

In order to find the appropriate lateral position of the detector, an additional ray tracing step is performed by the applied Parameter Coupling snippet. This particular snippet can be imported:
The unique index of the detector has to be specified in the specification tab of the snippet.
Now, if the direction of propagation of the plane-wave source is modified, the position of the detector is automatically adapted. In this example, an angle of 15° will lead to a shift of 26.3 mm in x direction.
Performance Evaluation – Oblique Incidence

\[\theta = 15^\circ \]
\[\theta = 0^\circ \]
\[\theta = -15^\circ \]
In the case of off-axis illumination, the position of the detector is also automatically adapted. In this example, a shift of 100 µm is automatically considered by the Parameter Coupling.
Performance Evaluation – Off-Axis Illumination

Δx = 100 μm

Δx = 0 μm

Δx = −100 μm
VirtualLab Fusion Technologies

- free space prisms, plates, cubes, ...
- lenses & freeforms
- apertures & boundaries
- gratings
- diffractive, Fresnel, meta lenses
- HOE, CGH, DOE
- micro lens & freeform arrays
- SLM & adaptive components
- diffractive beam splitters
- diffusers
- scatterer
- waveguides & fibers
- crystals & anisotropic components
- nonlinear components
- free space
- prisms, plates, cubes, ...

Field Solver
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Automatized Detector Positioning by using Parameter Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>SWF.0003</td>
</tr>
<tr>
<td>version</td>
<td>1.0</td>
</tr>
<tr>
<td>toolbox(es)</td>
<td>VirtualLab Fusion Basic</td>
</tr>
<tr>
<td>VLF version used for simulations</td>
<td>2020.2 (Build 2.22)</td>
</tr>
<tr>
<td>category</td>
<td>Feature Use Case</td>
</tr>
</tbody>
</table>
| further reading | - [Performance Analysis of Laser Scanning System](#)
- [Coupling of Parameters in VirtualLab Fusion](#) |