Polarization Conversion in Uniaxial Crystals
Task/System Illustration

analysis of changes in polarization for a focused laser beam propagating through uniaxial crystals
Highlights

- Physical-optics-based simulation includes
 - vectorial effect due to birefrigence,
 - interference.

- Full access to field attributes, includes
 - intensity,
 - phase.
Specification: Light Source

<table>
<thead>
<tr>
<th>Input laser beam</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>wavelength</td>
<td>633 nm</td>
</tr>
<tr>
<td>mode</td>
<td>Hermite (0, 0)</td>
</tr>
<tr>
<td>waist radius</td>
<td>1.5 mm × 1.5 mm</td>
</tr>
</tbody>
</table>

![Diagram of laser setup with polarizers, lenses, and calcite crystal]
Specification: Polarizers

<table>
<thead>
<tr>
<th>Polarizer #1</th>
<th>Polarizer #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>direction</td>
<td>direction</td>
</tr>
<tr>
<td>(x)-axis</td>
<td>(x / y)-axis</td>
</tr>
</tbody>
</table>

Polarizer #1 generates a linearly polarized laser beam along \(x\)-axis.

Polarizer #2 is set parallel/orthogonal to #1.
Specification: Lenses

Lens #1

- **focal length**: 30 mm

Lens #2

- **focal length**: 30 mm
Specification: Crystal

<table>
<thead>
<tr>
<th>Calcite crystal</th>
<th>optic axis</th>
<th>along z-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>refractive indices</td>
<td>$n_o = 1.6558$</td>
<td>$n_e = 1.4852$</td>
</tr>
<tr>
<td>(@ 633nm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

A beam of light is polarized by Polarizer #1, passes through Lens #1, and then through a Calcite crystal. The crystal's optic axis is along the z-axis. The light then passes through Lens #2 and Polarizer #2, emerging with its polarization altered by the crystal's refractive indices.
Results

Polarizer #2 along x (#2 \parallel #1)

Polarizer #2 along y (#2 \perp #1)

VirtualLab simulation
Results: Comparison

Experimental measurements

Figure from Y. Izdebskaya et al., Opt. Express 17, 18196-18208 (2009)
Results: Vectorial

- Physical-optics-based simulation includes
 - vectorial effect due to birefringence,
 - interference.
- Full access to field attributes, including
 - intensity,
 - phase.

Polarizer #2 along \boldsymbol{x} (#2 \parallel #1)

Polarizer #2 along \boldsymbol{y} (#2 \perp #1)

$|E_\boldsymbol{x}|^2$

$|E_\boldsymbol{y}|^2$
Results: Interference

Highlights

- Physical-optics-based simulation includes
 - vectorial effect due to birefringence,
 - interference,
- Full access to field attributes, including
 - intensity,
 - phase.

Polarizer #2 along \(x \) (#2 \(\parallel \) #1)

Polarizer #2 along \(y \) (#2 \(\perp \) #1)
Results: Phase

- Physical-optics-based simulation includes
 - vectorial effect due to birefringence,
 - interference.
- Full access to field attributes, including
 - intensity,
 - phase.

Polarizer #2 along x (#2 \parallel #1)
Polarizer #2 along y (#2 \perp #1)

www.LightTrans.com
<table>
<thead>
<tr>
<th>code</th>
<th>CM.0002</th>
</tr>
</thead>
<tbody>
<tr>
<td>version of document</td>
<td>1.0</td>
</tr>
<tr>
<td>title</td>
<td>Polarization Conversion in Uniaxial Crystals</td>
</tr>
<tr>
<td>category</td>
<td>Laser Systems > Crystal Modeling (CM)</td>
</tr>
<tr>
<td>author</td>
<td>Site Zhang (LightTrans)</td>
</tr>
<tr>
<td>used VL version</td>
<td>7.0.0.29</td>
</tr>
</tbody>
</table>

Specifications of PC Used for Simulation

<table>
<thead>
<tr>
<th>Processor</th>
<th>i7-4910MQ (4 CPU cores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>32 GB</td>
</tr>
<tr>
<td>Operating System</td>
<td>Windows 10</td>
</tr>
</tbody>
</table>