

VirtualLab Fusion's Applications, Technology & Workflows

Modeling Crystals & Anisotropic Media with VirtualLab Fusion

Presenter: Olga Baladron-Zorita, Senior Optical Engineer LightTrans International GmbH

Links of Interest

- LightTrans website: <u>www.LightTrans.com</u>
- Our past webinars: <u>www.LightTrans.com/products-</u> services/learning/webinars
- Find a VirtualLab Fusion distributor in your region: <u>www.LightTrans.com/company/distributors</u>
- You have further questions? Drop us a line at info@LightTrans.com, for technical questions support@lighttrans.com
- Subscribe to our newsletter: <u>www.LightTrans.com/newsletter</u>
- Connect with us on the following social networks:
 - LinkedIn (www.linkedin.com/company/lighttrans)
 - Twitter (www.twitter.com/LightTrans)
 - YouTube (<u>www.youtube.com/LightTransInternational</u>)

- Check out our downloads page to see VirtualLab in action across a broad range of fields of application: <u>www.LightTrans.com/resources/downloads</u>
- Want to give VirtualLab Fusion a test drive? Request a trial version: <u>www.LightTrans.com/resources/trial-software</u>
- Interested in purchasing VirtualLab Fusion? Check out our products, licence model and learn more about additional evaluation possibilities: <u>www.LightTrans.com/products-services/virtuallabfusion/editions-toolboxes</u>
- New! VirtualLab Fusion 2021.1: www.lighttrans.com/products-services/virtuallab-fusion/virtuallab-fusion-release-20211.html

One Platform, Many Solvers

Fast physical optics simulations...

... made possible by connecting field solvers!

VirtualLab Fusion acts as a software platform to connect electromagnetic field solvers in a **seamless**, **fully non-sequential manner**

solving Maxwell's equations for the whole system!

M. Kuhn, F. Wyrowski & C. Hellmann, **'Non-sequential Optical Field Tracing'**, *in* Thomas Apel & Olaf Steinbach, ed., 'Advanced Finite Element Methods and Applications', Springer Berlin Heidelberg, pp. 257-273 (2013)

LightTrans International

Optically Anisotropic Media in VirtualLab Fusion

Optical anisotropy, also known as birefringence, is the reason for various optical phenomena and the related applications. VirtualLab Fusion provides a fast and rigorous field tracing analysis algorithm which applies an S-matrix solver and works in the k-domain. In this use case, the basic configuration of an anisotropic medium is introduced.

Anisotropic Media in Catalog

Catalogs

Light

Sources

Catalogs

Windows

Materials Media Stacks Surfaces

Optical Setup

Tools

Optical Setup

In the new version three different kind of anisotropic media can be found in the media catalog:

- Uniaxial Crystal
- Biaxial Crystal

🛃 🛅 🛛 📂 🔛 🐻 📼

Start

1

Boundary

Responses

Sources

Coatings Components Detectors

Functions

• General Anisotropic Media

Defining the Anisotropic Media

Edit Biaxial Crystal	×	Edit Uniaxial Crystal	×
Material of Principal Index α Name Index_d_1.5_Abbe_50dPg Catalog Material	=_0 ✓	Material of Ordinary Refractive Index Name Index_d_1.5_Abbe_50dPgF_0 Catalog Material	Q✓
State of Matter Solid	~	State of Matter Solid	~
Material of Principal Index β Name Index_d_1.55_Abbe_60dP	JF_0	Material of Extraordinary Refractive Index Name Index_d_1.7_Abbe_60dPgF_0	Q
Catalog Material	✓	Catalog Material	~ 🥒 🚞
State of Matter Solid Material of Principal Index y Name Index_d_1.7_Abbe_50dPg Catalog Material State of Matter Solid	Edit General Anisotropic Medium Algorithms Snippet for Permittivity Tensor Snippet for Permeability Tensor	✓ olid ✓ Edit Validity: ✓ ✓ Edit Validity: ✓	Help
	Valid Vacuum Wavelength Range Minimum 1 pm	Maximum 100 km OK Cancel Help	

- The Biaxial Crystal is defined by the principal indices of three directions
- The Uniaxial Crystal is defined by the ordinary and extraordinary refractive indices
- General Anisotropic Media can be set up by directly defining the permittivity tensor

The preview of an anisotropic medium can be displayed through index ellipsoid or velocity ellipsoid, which makes it easy and intuitive to study the properties of the media.

VirtualLab Fusion comes with a series of pre-configurated crystal media which can be accessed from the media catalog. The user also can import & export his own defined media to the catalog.

Anisotropic Coatings

Anisotropic coatings can be found in the coating catalog and applied to all optical surfaces in VirtualLab Fusion.

Anisotropic Crystal Plate

Anisotropic Stratified Media Component

Anisotropic Surfaces

Waveplate Calculator

The Crystal Plate Component as well as the Calculator Section of the Main Window allows access to the Waveplate Calculator which can be used to determine 3 the thickness and retardation of Virtual and More Mixed Reality a waveplate with given characteristics. -Calculation of Waveplate Thickness X -532 nm Design Wavelength Retardation Wavelength Fraction 0.5 Half Wave Calcite-Crystal_CaCO3_Uniaxial 🚰 Load / Edit 10 mm Use Minimum Thickness Absolute Retardation 3282.5 10.00121121 mm Calculated Thickness OK Cancel Help

title	Optically Anisotropic Media in VirtualLab Fusion
document code	CRO.0002
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Feature Use Case
further reading	 <u>Conical Refraction in Biaxial Crystals</u> <u>Polarization Conversion in Calcite Crystal</u> <u>Multilayer Birefringent Reflective Polarizer</u>

Birefringence Effect of Anisotropic Calcite Crystal

Abstract

Birefringence is the most famous optical property of anisotropic materials and is widely used in many optical devices. When an input wave impinges upon a birefringent material, it will be split by polarization into two beams taking slightly different paths, known as ordinary beam and extraordinary beam. In this use case, the simulation of the birefringence with VirtualLab Fusion is demonstrated, and the dependence of the effect on input polarization and crystal thickness analyzed.

System Building Blocks

The orientation of the optic axis (marked in red) of the crystal needs to be adjusted in order for the birefringence to be observed.

×

Birefringence Effect in Uniaxial Crystals

When a beam which propagates along the optic axis of the crystal (and whose field vector therefore lies in the perpendicular plane to the optic axis) impinges on the crystal, it will not "see" the birefringence, and will pass through the crystal at a single velocity. However, when the beam propagates at an angle with respect to the optic axis, it will be refracted into two different modes (ordinary and extraordinary) as it enters the crystal. The two modes propagate with different velocities inside the crystal and their polarization is perpendicular to each other. This is the phenomenon known as double refraction or birefringence.

Field tracing result on the detector plane; please note that, the detector window is rotated to adapt the polarization direction.

Birefringence for Different Initial Polarization States

	ter Specification									
t up t	he parameter(s) to be va	aried.								
u can	select one or more par	ameters which shall be varied as well as th	e resulting number of iterations. Seve	eral <u>mode</u>	<u>s</u> are available s	pecifying how t	ne paran	neters are varied p	er iteration.	
	Joda Standard	~								
igei	standard									
ilter	by			- F	Polari	zatio	nč	anala		neter
2 *	Object	Category	Parameter	Vary	From	zauo	Steps	Stepize	Original Value	e
	Optical Setup Para	Environment	Air Pressure		arias	from	~ 0	$^{\circ}$ to 1	8U0	
		Medium at "-" Output (Air in Homogen	Material (Air) Constant Absorptio.	. v	anes			IU I	00	
			Wavelength		193 nm	50 µm		49.807 µm	532 nm	_
			Weight			45 - 200	-			٦.
		i i i	Polarization Angle		0°	180°	101	1.8°	0°	!
	"Gaussian Wave" (# 0)	-	Listance to input Plane	╸┽┍╸	-1E+303 mm	1E+303 mm	1	2E+303 mm	0.000	••
			Lateral Offset V		-1E+303 mm	1E+303 mm	1	2E+303 mm	0 mm	
			Number of Rays X	П	1	2000000000	1	1999999999	31	
			Number of Rays Y		1	200000000	1	1999999999	31	
			Oversampling Factor		1E-300	1E+300	1	1E+300	1	
			Field Circ Fester		15 200	15.200	4	15,200	4	

With the orientation of the crystal fixed, the polarization angle of the incident Gaussian wave is scanned with a Parameter Run. As the field tracing results show, the incident beam is distributed into two normal polarization states inside the crystal. When the incident polarization is perpendicular to the optic axis (here, *Polarization Angle* 135^o) only the ordinary beam will propagate inside the crystal. When the incident polarization lies along the projection of the optic axis on the entrance plane of the crystal, however, only be the extraordinary beam will be observed (here, *Polarization Angle* 45^o).

Field tracing results from parameter run, the animation of the varying results is available in the sample file. Please note that the detector is rotated 45° to adjust the polarization direction.

Birefringence for Varying Crystal Thickness

	ter Specification									
et up ti	he parameter(s) to be	a varied.								
u can	select one or more p	parameters which shall be varied as we	ell as the resulting number of iteratior	ns. Several <u>m</u>	odes are availabl	e specifying ho	w the pa	rameters are varied	per iteration.	
	Mada Standard	~								
agen	vioue standard	·								
Filter I	by							× Show Onl		meters
					O		ial	noce		ue 🚺
2 *	Object	Category	Parameter	Vary	(.rvs)		1 COK			
2 *	Object	Category Basal Positioning (Relative)	Angle Zeta	Vary	Crys	เล่า เก	ICr	11622		
2 * 	Object	Category Basal Positioning (Relative)	Angle Zeta X	Vary	Crysi	ai in s fro	m	100fm	to	
	Object	Category Basal Positioning (Relative) Basal Positioning (Absolute)	Parameter Angle Zeta X Y	Vary [] [] [] []	varie	s fro	m	100fm	to	
	"Calcite Block (10mm)" (# 2)	Category Basal Positioning (Relative) Basal Positioning (Absolute)	Angle Zeta X Y Y Z		varie	s fro	m	100fm	to	
2 *	"Calcite Block (10mm)" (# 2)	Category Basal Positioning (Relative) Basal Positioning (Absolute)	Parameter Angle Zeta X Y Z Component Size X		varie 10mr	s fro n	m	100fm	0° tonm 0 mm 20 mm	
	"Calcite Block (10mm)" (# 2)	Category Basal Positioning (Relative) Basal Positioning (Absolute)	Parameter Angle Zeta X Y Z Component Size X Component Size Y Thirkness		varie 10mr	s fro n		1000fm	0* tomm 0 mm 20 mm 20 mm	1
2 *	"Calcite Block (10mm)" (# 2)	Category Basal Positioning (Relative) Basal Positioning (Absolute)	Parameter Angle Zeta X Y Component Size X Component Size X Thickness		varie 10mr	s fro n		101.010101 µm	0° to ^{mm} 0 mm 20 mm 20 mm	
	Object "Calcite Block (10mm)" (# 2)	Category Basal Positioning (Relative) Basal Positioning (Absolute)	Parameter Angle Zeta X Y Z Component Size X Component Size Y Thickness Otherwork Galara Lateral Shift X Lateral Shift X		varie 10mr	S fro 10 mm 10 mm 12 403 mm 12 403 mm		1000fm 12-103 mm 12-103 mm 12-103 mm 101.010101 µm 22+303 mm	0° 10° 0° 0° 0° 0° 0° 0° 0° 0° 0°	-1
	Calcite Block (10mm)" (# 2) "Raw Data Detector" (# 600)	Category Basal Positioning (Relative) Basal Positioning (Absolute) Basal Positioning (Relative)	Angle Zeta X Y Z Component Size X Component Size Y Thickness Data a Geology Lateral Shift X Lateral Shift Y		Unit of the second seco	10 mm 12+303 mm 12+303 mm		1000fm 12-103 mm 12-103 mm 12-103 mm 12-103 mm 22-303 mm 22+303 mm	0° 10° 0° 0° 0° 0° 0° 0° 0° 0° 0°	-1
	Object "Calcite Block (10mm)" (# 2) "Raw Data Detector" (# 600)	Category Basal Positioning (Relative) Basal Positioning (Absolute) Basal Positioning (Relative)	Parameter Angle Zeta X Y Z Component Size X Component Size Y Thickness Drawn celdada Lateral Shift X Lateral Shift Y Spherical Angle Theta		100 m 100 m -1E+303 mm -1E+303 mm -360°	S fro S fro 10 mm 10 mm 12+303 mm 12+303 mm 12+303 mm 360°	100 1 1 1	2E+303 mm 2E+303 mm 1E-103 mm 1E-103 mm 2E+303 mm 2E+303 mm 720*	0° tO 0 mm 0 mm 20 mm 10 mm 0 mm 0 mm 0 mm	1

By varying the thickness of the crystal, the shift of the extraordinary beams is observable. As the field tracing results show, the thicker the calcite crystal, the larger the lateral separation between the two beams!

"Calcite Block (10mm)" (# 2) Basal Positioning (Relative) Angle Zeta Value "Calcite Block (10mm)" (# 2) Basal Positioning (Absolute) X Value "Raw Data Detector" (# 600) Basal Positioning (Relative) Component Size X 1 Component Size X "Raw Data Detector" (# 600) Basal Positioning (Relative) Lateral Shift X -1E+ Lateral Shift Y Spherical Angle Theta Coherical Angle Detector Coherical Angle Detector Coherical Angle Detector	00 mm 10 mm 100 101.010101 µm 10 mm 00 mm 10 mm 100 101.010101 µm 10 mm 00 mm 10 mm 100 101.010101 µm 10 mm 00 mm 10 mm 100 101.010101 µm 10 mm 00 mm 100 101.010101 µm 10 mm 0 mm 303 mm 122+303 mm 0 mm 0 mm 360' 360' 1 220' 0' 260' 200' 1 20' 0' 20 kack Next > Show *	thickness = 1mm	thickness = 3mm	0.558
Field tracing results from parameter run, the animation of the varying results is available in the sample file. To be noticed, the detector window is rotated to adapt the polarization direction.	thickness = 5mm	thickness = 8mm	thickness = 10mm	0

title	Birefringence Effect of Anisotropic Calcite Crystal
document code	CRO.0005
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Conical Refraction in Biaxial Crystals Polarization Conversion in Uniaxial Crystals

Polarization Conversion in Uniaxial Crystals

Abstract

When a linearly polarized beam is focused and then propagated through a uniaxial crystal, even when along the optic axis, complicated conversions may take place between different polarization components. Such an effect can be utilized for e.g. generation of optical vortices. Taking calcite crystal as an example, the conversion of polarization in uniaxial crystals is demonstrated in VirtualLab Fusion. The optical vortices generated within the process are visualized.

Modeling Task

System Building Blocks – Source

Gaussian Wave						
Polarization	Mode Sele	ction	Sampl	ing	Ray Se	lection
Basic Parameters	Spec	tral Param	eters		Spatial Para	meters
Generate Cross	Section					
	H	lermite Ga	ussian N	/lode		~
Order			0	[0
M^2 Parameter			1	[1
Reference Wavele	ngth (Vacuur	n)		[633 nm	~
Select Achromatic	: Parameter:					
Waist Radius (1/e^2)		1.5 mm	x [1.5 mm
O Half-Angle Div (1/e^2)	ergence	0.007694	42657 <u>7</u> °		0.007694	2657 <u>7</u> °
Rayleigh Leng	th	11.1698	3366 m		11.1698	3366 m
Astigmatism						
Offset between y-	and x-Plane					0 mm
Copy from Calc	ulator	Copy to x-	a <mark>nd y</mark> -Va	lues		\sim

The 1st polarizer changes the Gaussian wave into x polarized. We assume this as the starting point for our system, so the corresponding polarization state (linearly polarized along x) is directly defined in the source.

System Building Blocks – Uniaxial Calcite Crystal

Results

Results

Summary – Components...

of Optical System	in VirtualLab Fusion	Source Model/Component Solver
1. Source	Gaussian Source	
2. Polarizer	Polarizer	-
3. Lens	Ideal Lens	
4. Calcite Crystal	Crystal Plate	Layer Matrix [S-Matrix]
5. Detector	Camera Detector	-

Workflow in VirtualLab Fusion

- Set up input field
 - Basic Source Models [Tutorial Video]
- Construct real components using surfaces
- Set up Uniaxial Calcite Crystal
 - Optically Anisotropic Media in VirtualLab Fusion [Use Case]
- Define position and orientation of components
 - LPD II: Position and Orientation [Tutorial Video]

	ion and Orientation	Х
Definition Type	Relative Definition $\qquad \qquad \lor$	
Measurement from	Beam splitter (ideal) #1; CS of Channel '1'	
to	Input Channel Coordinate System 🗸 🧴	
Translation Parameters	Orientation Parameters	
Center Point of Rotati	ons	
Reference Point to be Used as Center Point	Reference Point of Input Channel	
Orientation Angles		
Orientation Definiti	on Type Cartesian Angles ~ (:::)	
Z-Axis D	irection Definition	
	Angle / Axis Value	
Alp	ha ~ -45°	
Swap Order ⊅ Bet	a v O°	
	About 7-Axis	
Rotation	/ Dodi L / No	
Rotation Z-A	xis Rotation Angle 0°	
Rotation Z-A:	xis Rotation Angle 0°	
Rotation Z-A:	xis Rotation Angle 0°	
Rotation Z-A:	xis Rotation Angle 0°	

VirtualLab Fusion Technologies

title	Polarization Conversion in Uniaxial Crystals
document code	CRO.0003
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Application Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Conical Refraction in Biaxial Crystals

Simulation of Multilayer Birefringent Reflective Polarizer with VirtualLab Fusion

Abstract

Multilayer birefringent reflective polarizers have big advantages in liquid crystal display (LCD) applications. They can recycle the backlight so as to improve the optical efficiency of LCDs. In this use case, we reproduce the experiments in Li et. al. J. Display Technol. 5, 335-340 (2009) to explore the relationship between the number of alternate birefringent layers and the Bragg reflection condition in VirtualLab Fusion. Then the variation of the reflectance efficiency with different wavelengths and incident angles is further investigated.

Task Description

Modeling of the Multilayer Stack

A Stratified Media Component is used to model the multilayer stack.

Layer A: Birefringent Uniaxial Layers (BL038)

Parameters follow from Li et. al. J. Display Technol. 5, 335-340 (2009)

Layer B: Isotropic Layers (NOA81)

Number of Periodic Layers to Establish Bragg Condition

- When the unpolarized plane wave hits the reflective polarizer, one direction of linear polarized light will pass through while the other component will be reflected back and depolarized, then it will be reflected again for another cycle. After several cycles, more and more light will be able to pass through the polarizer and therefore the energy efficiency is enhanced.
- In order to achieve the highest possible efficiency, the aim is to fulfill the Bragg reflection condition. Therefore, a minimum number of periodic layers is required. We used a *Parameter Run* to scan the wavelength range and calculate the efficiency with 20 layers, 50 layers, and 100 layers respectively.

Number of Periodic Layers to Establish Bragg Condition

Modeling of Multi-Stack Reflective Polarizer

Expanded Bandwidth by the Multi-Stack Method

Investigation of Reflectance Efficiency with Different Incident Angle

Peek into VirtualLab Fusion

convenient parameter scanning and result comparison

Workflow in VirtualLab Fusion

- Set the plane wave light source
 - Basic Source Models [Tutorial Video]
- Set the anisotropic layer component
 - <u>Optically Anisotropic Media in VirtualLab Fusion [Use</u> Case]
- Use Parameter Run to investigate the variation of reflectance efficiency with different wavelengths and incident angles

Document Information

title	Simulation of Multilayer Birefringent Reflective Polarizer with VirtualLab Fusion
document code	CRO.0001
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Application Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Conical Refraction in Biaxial Crystals Polarization Conversion in Uniaxial Crystals

Simulation and Analysis of Anisotropic Coating on Plane and Curved Surface

Abstract

VirtualLab Fusion provides the capability to add birefringent coatings, that is, layers of anisotropic media, to the surfaces of optical components, in order to exploit the extra freedom of polarization control and multiplexing in optical systems. In this example, we introduce this feature – adding anisotropic coatings on surfaces – and investigate the polarization conversion of a lambda/4 coating on a plane surface and a curved surface, respectively.

Quarter-Wave Plate Coating on Plane Surface

System Building Blocks – Source

Edit Scanning Source	e					×
Â.	Basic Parameters	Specific Parameters	Ray Selection	Polarization	Mode Selection	
Coordinate Systems	Intensity Distr	ibution matic Fields Set				
	Constant 1					
Position / Orientation	Number o Waveleng	f Directions	1 532 nm	×	3	
	Central Direct	ion	0°	×	15°	
Source Parameters	Field of Vield	2W			30°	
	O Angular Pi	tch Configuration			15°	
	Mode Coordin	nate System defined by		n of Mode	Source Plane	
السمحميل	La	mone		and the	m m m	and.

A *Scanning Source* is used to model the input plane waves. It is a convenient tool for the specification of several directions simultaneously and for polarization management.

1	Specific Parameters	Ray Selection	Polarization	Mode Selection
Polarization Ir	put		1	
te Type of Pola	rization Linearly P	olarized	~	
Angle		0°	1	
Angle				
in				
-Normalized Jo	nes Vector			
$\langle n \rangle$	/		.)	
	= (')	
- Vr /	\		٥/	

System Building Blocks – Coating on Surfaces

With the help of the *Waveplate Calculator*, the thickness of the coating layers can be calculated to achieve the desired retardation between the field components.

Help

7: Waveplate Calculator	
Design Wavelength 532 r	nm
Retardation	
Quarter Wave V Phase Difference	 1.570796327 rad
Medium	
Calcite-Crystal_CaCO3_Uniaxial	
🚰 Load 🥒 Edit	Q View
Use Minimum Thickness	
Absolute Retardation 1.570796327 r	ad
Calculated Thickness 761.7068705 r	nm i
Validity: 🕑	Close Help

Polarization Conversion at a Quarter-Wave Plate

In the idealized situation, when linearly polarized light impinges on a quarter-wave plate at 45° to the optic axis, the transmitted light is divided into two equal electric field components. One of these is retarded by a quarter wavelength and the overlap of both beams at the exit plane of the plate generates circularly polarized light. And vice versa: if the incident light is circularly polarized, it will be transformed into linearly polarized light.

Influence of Fresnel Effect Deviation

- However, when a real quarter-wave coating is configured, the two divided electric field components will face different refraction indices inside the crystal.
- Hence, the Fresnel effect when leaving the crystal will differ for the two electromagnetic field components as well, and the polarization state of the transmitted light will form an ellipse instead of a perfect circle.
- In order to eliminate this influence, an additional anti-reflection coating is applied together with the crystal coating. Then the perfect circularly polarized light is observed.

Quarter-Wave Plate Coating on Plane Surface

3.002929688 mm

2.997070313 mm

Another additional effect that might influence the polarization conversion is the angle of incidence. Due to the projection of the components of the field on the plane of the plate, the resulting polarization state will become more elliptical with increasing angle.

Quarter-Wave Plate Coating on Curved Surface

-3.002929688 mm

2.997070313 mm

If a quarter-wavelength coating is applied to a curved surface instead, which curvature allows the light to propagate along the normal vector of the surface, the effect of different projections of the field components can be avoided. This results in perfect circular polarization for all angles of incidence.

 E_x after real quarter-wave coating on curved surface with 0°, 15° and 30° of incidence

Document Information

title	Simulation and Analysis of Anisotropic Coating on Plane and Curved Surface
document code	CRO.0006
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Feature Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Conical Refraction in Biaxial Crystals Polarization Conversion in Uniaxial Crystals

Conical Refraction in Biaxial Crystals

Abstract

When circularly polarized light propagates through a biaxial crystal along one of its optic axes, the transmitted field evolves into a cone, a phenomenon which is known as conical refraction. Several applications have been developed based on this effect, such as Bessel beam generation and optical tweezers. With the fast-physical-optics simulation technology in VirtualLab Fusion, conical refraction from a KGd crystal is demonstrated.

Modeling Task

System Building Blocks – Source

Polarization Mode 9	Selection Samp	oling	Ray Selecti	on
Basic Parameters S	pectral Parameters		Spatial Paramete	rs
Generate Cross Section				
	Hermite Gaussian	Mod	e	×
Order	0			0
M^2 Parameter	1			1
Reference Wavelength (Vac	tuum)		632 nm	~
Select Achromatic Paramet	er:			
Waist Radius (1/e^2)	800 µm	x	800	μm
O Half-Angle Divergence (1/e^2)	0.01440395685°		0.0144039568	3 <u>5</u> °
Rayleigh Length	3.182224379 m		3.182224379	m
Astigmatism				
Offset between y- and x-Pla	ane		0 n	nm
Copy from Calculator	Copy to x- and y-V	alue	5	

A linearly polarized Gaussian field, with a wavelength of 632 nm, is employed as the input. It first passes through a quarter-wave plate, which converts the linear polarization to circular. This effect is included in the source model directly.

System Building Blocks – Biaxial KGd Crystal

Parameters follow from C. F. Phelan et al., Opt. Express 17, 12891-12899 (2009)

Simulation Results

Summary – Components...

of Optical System	in VirtualLab Fusion	Source Model/Component Solver
1. Source	Gaussian Source	
2. Lens	Ideal Lens	
3. KGd Crystal	Crystal Plate	Layer Matrix [S-Matrix]
4. Detector	Camera Detector	-

Workflow in VirtualLab Fusion

- Set up input field
 - Basic Source Models [Tutorial Video]
- Construct real components using surfaces
- Set up Biaxial Crystal
 - Optically Anisotropic Media in VirtualLab Fusion [Use Case]
- Define position and orientation of components
 - LPD II: Position and Orientation [Tutorial Video]

Definition of Basal Posit	tion and Orientation	×
Definition Type	Relative Definition $\qquad \lor$	
Measurement from	Beam splitter (ideal) #1; CS of Channel '1'	
to	Input Channel Coordinate System 🗸 🧃	
Translation Parameters	Orientation Parameters	
Center Point of Rotati	ons	
Reference Point to be Used as Center Point	e Reference Point of Input Channel \checkmark	
Orientation Angles		
Orientation Definiti	ion Type Cartesian Angles 🗸 (:::)	
Z-Axis Di	irection Definition	
r [Angle / Axis Value	
Alp	ha v -45°	
Swap Order \$ Bet	ta v O°	
Rotation	About Z-Axis	
Z-A	xis Rotation Angle 0°	

VirtualLab Fusion Technologies

title	Conical Refraction in Biaxial Crystals
document code	CRO.0001
version	1.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.176)
category	Application Use Case
further reading	 Optically Anisotropic Media in VirtualLab Fusion Polarization Conversion in Uniaxial Crystals

- Electromagnetic field solver for anisotropic media
- Additional information about field tracing