

VirtualLab Fusion Technology – Solvers and Functions

Idealized Grating Functions

For the Functional Grating Component

Abstract

The idealized grating function works without information about the actual shape of the grating structure. In the spatial frequency (k) domain, it defines

- 1. the position (in k domain) of the diffraction orders according to the grating equation, and
- 2. the effective B-matrix for each order according to a desired diffraction efficiency.

The relationship between the position of an arbitrary diffraction order and that of the input is governed by the grating equation. For a specific order, to connect the outgoing electromagnetic field quantities with the incoming ones, a 2×2 B-matrix is needed. An idealized method is used to define such an effective B-matrix from a given diffraction efficiency.

Function Algorithm – Grating Equation

• In the k domain, the grating equation can be expressed as

$$\boldsymbol{\kappa}^{\text{out}} = \boldsymbol{\kappa}^{\text{in}} + j_x \frac{2\pi}{d_x} + j_y \frac{2\pi}{d_y} \,,$$

where

- κ^{out} is the transverse spatial frequency of an arbitrary diffraction order, with order indices j_x and j_y along x and y respectively;
- κ^{in} is the input transverse spatial frequency;
- d_x and d_y are the grating periods along x and y respectively.
- From the transverse spatial frequencies, the corresponding diffraction angle can be calculated if needed. In this document we keep working in the k domain and only leave it when required.

illustration of the grating equation in the k domain for a 1D grating along the x direction

Function Algorithm – From B-Matrix to Efficiency

• Let us consider the following input plane wave

$$\boldsymbol{E}_{\perp}^{\mathsf{in}}(\boldsymbol{r}) = \tilde{\boldsymbol{E}}_{\perp}^{\mathsf{in}} \exp(\mathrm{i}\boldsymbol{\kappa}^{\mathsf{in}} \cdot \boldsymbol{\rho}) \exp(\mathrm{i}k_{z}^{\mathsf{in}}z),$$

with given κ^{in} and $\tilde{\boldsymbol{E}}_{\perp}^{\text{in}} = (\tilde{E}_x^{\text{in}}, \tilde{E}_y^{\text{in}}).$

 For a specific diffraction order, the output plane wave can be expressed as

$$\boldsymbol{E}_{\perp}^{\mathsf{out}}(\boldsymbol{r}) = \tilde{\boldsymbol{E}}_{\perp}^{\mathsf{out}} \exp(\mathrm{i}\boldsymbol{\kappa}^{\mathsf{out}} \cdot \boldsymbol{\rho}) \exp(\mathrm{i}k_{z}^{\mathsf{out}}z),$$

with κ^{out} determined via the grating equation, and the transverse field components connected by a 2×2 B-matrix:

$$\begin{pmatrix} \tilde{E}_x^{\text{out}} \\ \tilde{E}_y^{\text{out}} \end{pmatrix} = \begin{pmatrix} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{pmatrix} \begin{pmatrix} \tilde{E}_x^{\text{in}} \\ \tilde{E}_y^{\text{in}} \end{pmatrix}$$

• For a homogeneous isotropic medium with constant relative permittivity ϵ and permeability μ , we can calculate

$$k_z = \sqrt{k_0^2 \epsilon \mu - k_x^2 - k_y^2} \,,$$

and

$$\tilde{E}_z = -\frac{k_x\tilde{E}_x + k_y\tilde{E}_y}{k_z}\,.$$

• We restrict ourselves to the case of **lossless** media (real-valued ϵ and μ), and in such cases, the time-averaged Poynting vector can be expressed as

$$\boldsymbol{S} = \left\langle \bar{\boldsymbol{S}}^{(\mathsf{r})}(t) \right\rangle = \frac{1}{2\omega\mu_0\mu} ||\tilde{\boldsymbol{E}}||^2 \boldsymbol{k},$$

with its direction coinciding with that of the wavevector k.

• Applying the relation above, the **diffraction efficiency** of a specific order can be calculated (with respect to the input) via

$$\eta = \frac{S_z^{\text{out}}}{S_z^{\text{in}}} = \frac{\mu^{\text{in}} ||\tilde{\boldsymbol{E}}^{\text{out}}||^2 k_z^{\text{out}}}{\mu^{\text{out}} ||\tilde{\boldsymbol{E}}^{\text{in}}||^2 k_z^{\text{in}}},$$

where S_z and k_z are the *z* components of the time-averaged Poynting vector and the wavevector respectively.

• Here \tilde{E} is a three-dimensional vector:

$$ilde{m{E}} = \left(egin{array}{c} ilde{E}_x \ ilde{E}_y \ ilde{E}_z \end{array}
ight) \,.$$

- From the diffraction efficiency $\eta,$ we can only conclude the following relation

$$\frac{||\tilde{\boldsymbol{E}}^{\mathsf{out}}||^2}{||\tilde{\boldsymbol{E}}^{\mathsf{in}}||^2} = \frac{\mu^{\mathsf{out}}k_z^{\mathsf{in}}}{\mu^{\mathsf{in}}k_z^{\mathsf{out}}}\eta.$$

- Obviously, the ratio between $||\tilde{E}^{out}||^2$ and $||\tilde{E}^{in}||^2$ does NOT fix a unique B-matrix. The solution of the B-matrix in this case is, in general, ambiguous.
- In order to select one possible solution for the B-matrix, additional conditions or constraints must be introduced.
- We assume that the B-matrix is diagonal and identical in the TE-TM coordinate system that is defined by the input and output wavevector directions.
- This is one typical way to define the B-matrix, but not the only way.

- We can generally define the basis vectors of the TE-TM coordinate system, by using the two wavevectors k^{in} and k^{out} , as
 - TE (*Y*-direction) : $\hat{\boldsymbol{Y}} = \hat{\boldsymbol{k}}^{\mathsf{in}} imes \hat{\boldsymbol{k}}^{\mathsf{out}}$, and
 - TM (X-direction): $\hat{\boldsymbol{X}}^{\text{in/out}} = \operatorname{sign}(\hat{\boldsymbol{k}}_z^{\text{in/out}}) \left(\hat{\boldsymbol{Y}} \times \hat{\boldsymbol{k}}^{\text{in/out}}\right).$
- In the special case when the relation

$$\hat{m{k}}^{\mathsf{in}}=\pm\hat{m{k}}^{\mathsf{out}}$$

holds, we define the basis vectors as

- TE (*Y*-direction) : $\hat{Y} = \hat{k}^{in} \times \hat{z}$, with *z* as the unit direction vector along *z*-direction, and

- TM (X-direction):
$$\hat{\boldsymbol{X}}^{\text{in/out}} = \operatorname{sign}(\hat{\boldsymbol{k}}_z^{\text{in/out}}) \left(\hat{\boldsymbol{Y}} \times \hat{\boldsymbol{k}}^{\text{in/out}}\right).$$

definition of the basis vectors for the TE-TM coordinate system

• With the basis vectors of the TE-TM coordinate system defined, we can write down the following transformation relations

$$\begin{pmatrix} \tilde{E}_x^{\text{in}} \\ \tilde{E}_y^{\text{in}} \end{pmatrix} = \begin{pmatrix} \hat{X}_x^{\text{in}} & \hat{Y}_x \\ \hat{X}_y^{\text{in}} & \hat{Y}_y \end{pmatrix} \begin{pmatrix} \tilde{E}_X^{\text{in}} \\ \tilde{E}_Y^{\text{in}} \end{pmatrix} ,$$

$$\begin{pmatrix} \tilde{E}_x^{\text{out}} \\ \tilde{E}_y^{\text{out}} \end{pmatrix} = \begin{pmatrix} \hat{X}_x^{\text{out}} & \hat{Y}_x \\ \hat{X}_y^{\text{out}} & \hat{Y}_y \end{pmatrix} \begin{pmatrix} \tilde{E}_X^{\text{out}} \\ \tilde{E}_Y^{\text{out}} \end{pmatrix} .$$

• In the TE-TM system, the B-matrix is expressed in the following simple form:

$$\left(\begin{array}{c} \tilde{E}_{\mathsf{X}}^{\mathsf{out}} \\ \tilde{E}_{\mathsf{Y}}^{\mathsf{out}} \end{array}\right) = \left(\begin{array}{c} B & 0 \\ 0 & B \end{array}\right) \left(\begin{array}{c} \tilde{E}_{\mathsf{X}}^{\mathsf{in}} \\ \tilde{E}_{\mathsf{Y}}^{\mathsf{in}} \end{array}\right) \,.$$

definition of the basis vectors for the TE-TM coordinate system

• In the TE-TM coordinate, it is straight-forward to see that

$$||\tilde{\boldsymbol{E}}^{\mathsf{in}}||^{2} = |\tilde{E}_{\mathsf{X}}^{\mathsf{in}}|^{2} + |\tilde{E}_{\mathsf{Y}}^{\mathsf{in}}|^{2}, \quad ||\tilde{\boldsymbol{E}}^{\mathsf{out}}||^{2} = \left(|\tilde{E}_{\mathsf{X}}^{\mathsf{in}}|^{2} + |\tilde{E}_{\mathsf{Y}}^{\mathsf{in}}|^{2}\right)|B|^{2},$$

and by substituting in the expression of diffraction efficiency, we find that

$$\frac{||\tilde{\boldsymbol{E}}^{\mathsf{out}}||^2}{||\tilde{\boldsymbol{E}}^{\mathsf{in}}||^2} = |B|^2 = \frac{\mu^{\mathsf{out}}k_z^{\mathsf{in}}}{\mu^{\mathsf{in}}k_z^{\mathsf{out}}}\eta,$$

from which the value of |B| can be fixed.

• With the help of the coordinate transformation relations, we can finally write down the relations in the *x*-*y* coordinate system:

$$\left(\begin{array}{c} \tilde{E}_x^{\text{out}} \\ \tilde{E}_y^{\text{out}} \end{array} \right) = B \left(\begin{array}{c} \hat{e}_x^{\text{X,out}} & \hat{e}_x^{\text{Y}} \\ \hat{e}_y^{\text{X,out}} & \hat{e}_y^{\text{Y}} \end{array} \right) \left(\begin{array}{c} \hat{e}_x^{\text{X,in}} & \hat{e}_x^{\text{Y}} \\ \hat{e}_y^{\text{X,in}} & \hat{e}_y^{\text{Y}} \end{array} \right)^{-1} \left(\begin{array}{c} \tilde{E}_x^{\text{in}} \\ \tilde{E}_y^{\text{in}} \end{array} \right) \,.$$

Usage in VirtualLab Fusion

 Idealized grating functions do not require any knowledge about the specific shape of the grating structure, and can be initialized simply with the period value(s).

Edit Functional Gra	ating Component	×
Coordinate Systems	Component Size 20 mm × 20 mm Reference Surface (all Channels) Plane Interface	8
Position /	Image: Logid ✓ Edit Aperture ○ Yes	ew
Structure	Grating	
Mm	Homogeneous Medium Behind Surface period along x for 1E) gratings
	Load Zedit	ew
Channel Configuration		
Valid	dity: 🔏 🚺 OK Cancel H	lelp

Usage in VirtualLab Fusion

- Idealized grating functions do not require any knowledge about the specific shape of the grating structure, and can be initialized simply with the **period** value(s).
- Then, the **indices** of the diffraction orders to be considered and the corresponding **efficiencies** need to be specified in addition.
- The corresponding B-matrix is automatically derived from the diffraction efficiency, by assuming the B-matrix is diagonal and identical in the TE-TM coordiante system.

title	VirtualLab Fusion Technology – Idealized Grating Functions
document code	TEC.0004
version	1.0
category	Technology White Paper
further reading	 <u>VirtualLab Fusion Technology – FMM / RCWA [S-Matrix]</u> <u>Grating Stretcher for Ultrashort Pulses</u>