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VirtualLab Fusion Technology — Solvers and Functions

FMM / RCWA [S-Matrix]

For the Grating Component



Abstract

The FMM/RCWA solver works in the spatial
frequency domain (k domain). It consists of

1. an eigenmode solver for each periodically
modulated layer and

2. an S-matrix for matching the boundary conditions
between the layers.
The eigenmode solver computes the field
solution in the k domain for the periodically
modulated medium in each layer. The S-
matrix algorithm calculates the response of
the whole layer system by matching the
boundary conditions in a recursive manner. It
is well-known for its unconditional numerical
stability since, unlike the traditional transfer
matrix, it avoids the exponentially growing
functions in the calculation steps.
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Solver Algorithm — Eigenmode Solver

« The FMM/RCWA solves the following two Maxwell equations
V x E(r)=ikyH(r),
V x H(r) = —ikoe(p, z) E(r)

for the modal fields (i.e., the eigen solutions), which are com-
puted for the periodically modulated medium in each layer.

« The periodicity of the medium can be seen in the permittivity
distribution, given by

e(p2) = e(p+d,2),

where d = (d,,d,), d, and d, being the period along = and y
respectively.

* Here we use r = (z,y,2) and

p = (z,y) as the 3D posi-
tion vector and its 2D projec-
tion onto the transversal plane
respectively.
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Solver Algorithm — Eigenmode Solver

 As a periodic function, the permittivity distribution ¢(p) can be

expanded in the form of a Fourier series, as follows:
* The infinite series must, in prac-

e(z,y) = Z Z Em.n €xXP(ikzm) exp(ikyny) tice, be truncated:
with the spatial frequency components k., and k,,, given by YM n_;_‘
kym =m2n/d,, and ky, =n2r/d,. with +£M and +N the limits for
the sum.

« Similarly, the electromagnetic field components can also be

written in series form: * The truncation limits the num-

ber of spatial frequencies con-

Vilz,y, z) = Volkoms kuns 2) exp(ikpm) exp(ikyny) | sidered in the computation. This
o(T,y,2) ZZ o yns %) €xp( ) exp(ikyny) magnitude is often referred to as

the number of diffraction or-

where V;, (V;) represents any of the six field components in the ders.
space (spatial frequency) domain.




Solver Algorithm — Eigenmode Solver

» The original Maxwell’'s equations can be transformed into the k
domain, and after some rearranging, the following set of ordi-
nary differential equations is obtained:

[E.] [Q0:]  [Q2]  [Qs]  [214] [E.]
i [Ey] ik, [Q2:] [Q22] [Q23] [Q24] [Ey]
dz | [H.] [0 [9D62]  [Q53] [Qa] | | (o] |

[H,] [Qa]  [Qa2]  [Qas]  [Qaa] [H,]

the explicit expressions of [2;;] can be found in [1, 2].

* It is worth mentioning that the construction of the matrix el-
ements [€2,z] requires the Fourier series of the permittivity
e(p,z). In VirtualLab Fusion, we have included the correct
Fourier factorization rule according to [1-3].

» Here we use the following short-
hand: [F,| represents a vector
containing all the Fourier coeffi-
cients E,(kuym, kyn), and analo-
gously for the matrices [;;].




Solver Algorithm — Eigenmode Solver

« The set of ordinary differential equations can be solved numer-
ically as an eigenvalue-eigenvector problem, which shows the
modal field solution to be given by

» The convergence of the solution
to the eigenvalue-eigenvector
problem depends on the trun-
cation number of spatial fre-

(] |IW' ) [[W” S [ [ LL][[GXP(WLZ)]] quencies in the computation.
[Ey] | |IW' 20 [[W” &) V] e | i][[exp(viz)]]

~ — I ,Hx II Hx 31, Hx 7711, HX
[, B - C E][{exp(ﬂz)ﬂ

« Here, the modes are sorted into positive and negative direc-
tions, as preparation for later use in the S-matrix. We write the
expression above in the following, more compact, form:
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Solver Algorithm — S-Matrix

in total n layers under investigation
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Solver Algorithm — S-Matrix

At the surface with index (j), based on the boundary condi-
tions, it is not hard to write down the following relation

| . ) 11 1 (G+1)7-1 (G+1)
( Wéjli Wéj% ) CZF-) = ( W§€+1§ W%—i—l; ) o (‘+01) 1 CEL'H) '
wg wi )\ el Wi W S VAN

By applying the boundary conditions at each surface, a recur-
sive relation can be found to relate the field in front of and be-
hind the layered slab in the form below

n 0,n 0o,n 0
o\ _ [ sam sgn ) (o)
c'” s&y™ sky™ c™
There are different variations to derive the recursive relation. In  * Other recursion variations will

VirtualLab Fusion, we follow the W—t—S variation, according ~ 2ecome avaliable in Virtuall.ab
to [4, 5] Fusion in future.




Numerical Complexity

« The total number of spatial frequencies for each layer can be
calculated as
L=02N+1)x(2M +1),

(2N + 1), (2M + 1) being the number of spatial frequencies in
each of the two dimensions, for general cases.

« Considering the typical numerical operations (e.g., matrix
eigenvalue problem, matrix multiplication or inversion), the
counts of FLOPs in the FMM/RCWA can be roughly estimated
as being proportional to L?.

« An arbitrary grating structure may consist of several layers. Let
us denote the number of layers by k, then the total counts of
FLOPs in the FMM/RCWA can be roughly estimated as kL3.

k layers




Numerical Complexity

« Considering a dielectric rectangular grating along z, with vary-
iIng period d,, to ensure numerical convergence at least 50
evanescent spatial frequencies must be considered in the com-
putation. Then, we can estimate the FLOPs

d,/A L=(2N+1) L3 (~FLOP counts)
1 53 148,877 » For a 2D pillar grating, with varying periods d,

10 71 357,911 and d,,, we always ensure at least 10 evanes-
cent spatial frequencies in both directions are

50 151 3,442,951 . _
considered, then we can estimate the FLOPs
d,/A, L=2N+1) L3 (~FLOP counts)
dy /2 X (2M + 1)
1, 1 13%13 4,826,809
10, 10 31x31 887,503,681

100, 100 211x211  88,245,939,632,761
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Usage in VirtualLab Fusion

« To apply the FMM/RCWA solver in VirtualLab
Fusion, the permittivity distribution

€(p,z) =e(p+d,z)

must be specified first. Here, d = (d,,d,),
with d, and d, the period along = and y re-
spectively.

« There are two ways to define it

— direct specification of the refractive index
distribution n(p, z), or

— using surfaces with profiles h;(p) and filling
materials with constant n;.

for gratings made of isotropic media.

direct refractive index distribution

Edit Stack *
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=
- O
Q
|
: @
ST
- (0
|
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X
Index | z-Distance | z-Position Interface Subseguent Medium Com
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< >
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Usage in VirtualLab Fusion

 To apply the FMM/RCWA solver in VirtualLab
Fusion, the permittivity distribution

€(p,z) =e(p+d,z)

must be specified first. Here, d = (d,d,),
with d, and d, the period along = and y re-
spectively.

« There are two ways to define it

— direct specification of the refractive index dis-
tribution n(p, z), or

— using surfaces with profiles h;(p) and fill-
ing materials with constant n;.

for gratings made of isotropic media.

surface profiles with constant refractive indices

Edit Stack *

Base Block

|

Index | z-Distance | z-Position Interface Subseguent Medium Com

» 1 0 mm 0 mm Sinusoidal Grating Inte Titanium_Dicwide-Ti0. Enter your commeni
2 13878nm 13878 nm  Sinusoidal Grating Inte Silicon_Dioxide-Si02- Enter your comment

3 3577nm 45643 nm  Sinusoidal Grating Inte Titanium_Dioxide-TiO. Enter your commeni

4 13878nm 18243 nm  Sinusoidal Grating Inte Silicon_Dioxide-Si02- Enter your comment
5 10731 nm 25574 nm  Sinusoidal Grating Inte Homogeneous Medium Enter your commend

£ >
Walidity: (V] Add Insert Delete
Period
Stack Period is | Dependent from the Period of Interface ~ | with Index |1
fseipeics 7l period along « for 1D gratings
GB| | |Teools 5§~ Cancel Help
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Usage in VirtualLab Fusion

The truncation nhumber of spatial frequen-
cies (often referred to as the number of
diffraction orders), plays a role in the con-
vergence behavior in the computation.

There are two ways to specify this number

— directly defininig the total number of spatial
frequencies, or

— including all the propagating orders, plus a
certain number of additional evanescent or-
ders.

The preset number in VirtualLab Fusion gives
good convergence for most dielectric grat-
iIngs; however, for metal gratings, an addi-
tional convergence test is recommanded.

specifying number of
spatial frequencies

Fourier Modal Method

Parameters to Specify

E () Number of Diffraction Orders

o ® Number of Evanescent Orders .
. (Considering All Propagating Crders) 1

[T
------------------------------ =

Edit General Grating 20 Component Number of Evanescent Orders o
Propagation Methods  Advanced Settings Cancel Help
: ﬁ Component Propagation Fourier Modal Method w & Edit
Coordinate
Systems
Interface Stack Medium
Y Plane Interface Sinusoidal Grating Homogeneous Medium
Fourier Modal Metho Fourier Modal Metho Fourier Modal Metho
Fosition /
Dﬁgﬁ,{;’t?(;n Plane Interface Stack Homogeneous Medium
Fourier Modal Metho
Structure
Propagation
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