

VirtualLab Fusion Technology – Solvers and Functions

FMM / RCWA [S-Matrix]

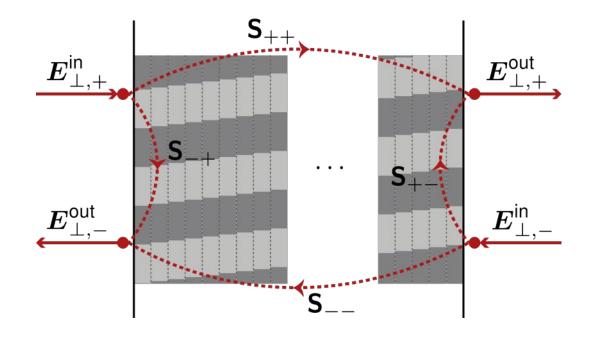
For the Grating Component

Abstract

The FMM/RCWA solver works in the spatial frequency domain (**k domain**). It consists of

- 1. an eigenmode solver for each periodically modulated layer and
- 2. an S-matrix for matching the boundary conditions between the layers.

The eigenmode solver computes the field solution in the k domain for the periodically modulated medium in each layer. The Smatrix algorithm calculates the response of the whole layer system by matching the boundary conditions in a recursive manner. It is well-known for its unconditional numerical stability since, unlike the traditional transfer matrix, it avoids the exponentially growing functions in the calculation steps.



• The FMM/RCWA solves the following two Maxwell equations

$$egin{aligned}
abla imes oldsymbol{E}(oldsymbol{r}) &= \mathrm{i}k_0oldsymbol{H}(oldsymbol{r})\,, \
abla imes oldsymbol{H}(oldsymbol{r}) &= -\mathrm{i}k_0\epsilon(oldsymbol{
ho},z)oldsymbol{E}(oldsymbol{r}) \end{aligned}$$

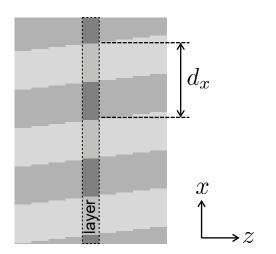
for the modal fields (i.e., the eigen solutions), which are computed for the periodically modulated medium in each layer.

• The periodicity of the medium can be seen in the **permittivity distribution**, given by

$$\epsilon(\boldsymbol{\rho},z) = \epsilon(\boldsymbol{\rho} + \boldsymbol{d},z)\,,$$

where $d = (d_x, d_y)$, d_x and d_y being the **period** along x and y respectively.

• Here we use r = (x, y, z) and $\rho = (x, y)$ as the 3D position vector and its 2D projection onto the transversal plane respectively.



• As a periodic function, the permittivity distribution $\epsilon(\rho)$ can be expanded in the form of a Fourier series, as follows:

$$\epsilon(x,y) = \sum_{m} \sum_{m} \tilde{\epsilon}_{m,n} \exp(\mathrm{i}k_{xm}x) \exp(\mathrm{i}k_{yn}y) \,,$$

with the spatial frequency components k_{xm} and k_{yn} given by

$$k_{xm}=m2\pi/d_x\,,$$
 and $k_{yn}=n2\pi/d_y\,,$

• Similarly, the electromagnetic field components can also be written in series form:

$$V_{\ell}(x, y, z) = \sum_{m} \sum_{n} \tilde{V}_{\ell}(k_{xm}, k_{yn}, z) \exp(\mathrm{i}k_{xm}x) \exp(\mathrm{i}k_{yn}y),$$

where V_{ℓ} (\tilde{V}_{ℓ}) represents any of the six field components in the space (spatial frequency) domain.

• The infinite series must, in practice, be truncated:

$$\epsilon(x,y) = \sum_{m=-M}^{M} \sum_{n=-N}^{N} \cdots$$

- with $\pm M$ and $\pm N$ the limits for the sum.
- The truncation limits the **number of spatial frequencies** considered in the computation. This magnitude is often referred to as the **number of diffraction orders**.

Solver Algorithm – Eigenmode Solver

• The original Maxwell's equations can be transformed into the k domain, and after some rearranging, the following set of ordinary differential equations is obtained:

$$\frac{\mathrm{d}}{\mathrm{d}z} \begin{pmatrix} [\tilde{E}_x] \\ [\tilde{E}_y] \\ [\tilde{H}_x] \\ [\tilde{H}_y] \end{pmatrix} = \mathrm{i}k_0 \begin{pmatrix} \llbracket \tilde{\Omega}_{11} \rrbracket & \llbracket \tilde{\Omega}_{12} \rrbracket & \llbracket \tilde{\Omega}_{13} \rrbracket & \llbracket \tilde{\Omega}_{14} \rrbracket \\ \llbracket \tilde{\Omega}_{21} \rrbracket & \llbracket \tilde{\Omega}_{22} \rrbracket & \llbracket \tilde{\Omega}_{23} \rrbracket & \llbracket \tilde{\Omega}_{24} \rrbracket \\ \llbracket \tilde{\Omega}_{31} \rrbracket & \llbracket \tilde{\Omega}_{32} \rrbracket & \llbracket \tilde{\Omega}_{33} \rrbracket & \llbracket \tilde{\Omega}_{34} \rrbracket \\ \llbracket \tilde{\Omega}_{41} \rrbracket & \llbracket \tilde{\Omega}_{42} \rrbracket & \llbracket \tilde{\Omega}_{43} \rrbracket & \llbracket \tilde{\Omega}_{44} \rrbracket \end{pmatrix} \begin{pmatrix} [\tilde{E}_x] \\ [\tilde{E}_y] \\ [\tilde{H}_x] \\ [\tilde{H}_y] \end{pmatrix};$$

• Here we use the following shorthand: $[\tilde{E}_x]$ represents a vector containing all the Fourier coefficients $\tilde{E}_x(k_{xm}, k_{yn})$, and analogously for the matrices $[\![\tilde{\Omega}_{ij}]\!]$.

the explicit expressions of $[\![\tilde{\Omega}_{jk}]\!]$ can be found in [1, 2].

• It is worth mentioning that the construction of the matrix elements $[\![\tilde{\Omega}_{jk}]\!]$ requires the Fourier series of the permittivity $\epsilon(\rho, z)$. In VirtualLab Fusion, we have included the correct **Fourier factorization rule** according to [1-3].

Solver Algorithm – Eigenmode Solver

• The set of ordinary differential equations can be solved numerically as an eigenvalue-eigenvector problem, which shows the modal field solution to be given by

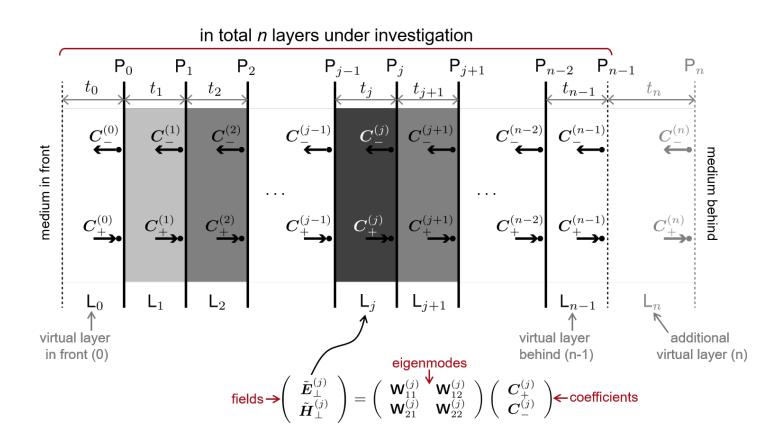
$$\begin{pmatrix} [\tilde{E}_{x}] \\ [\tilde{E}_{y}] \\ [\tilde{H}_{x}] \\ [\tilde{H}_{y}] \end{pmatrix} = \begin{pmatrix} [\tilde{W}_{+}^{\mathsf{I},\mathsf{Ex}}] & [\tilde{W}_{+}^{\mathsf{II},\mathsf{Ex}}] & [\tilde{W}_{-}^{\mathsf{I},\mathsf{Ex}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Ex}}] \\ [\tilde{W}_{+}^{\mathsf{I},\mathsf{Ey}}] & [\tilde{W}_{+}^{\mathsf{II},\mathsf{Ey}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Ey}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Ey}}] \\ [\tilde{W}_{+}^{\mathsf{II},\mathsf{Hx}}] & [\tilde{W}_{+}^{\mathsf{II},\mathsf{Hx}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Hx}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Hx}}] \\ [\tilde{W}_{+}^{\mathsf{II},\mathsf{Hx}}] & [\tilde{W}_{+}^{\mathsf{II},\mathsf{Hx}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Hx}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Hx}}] \\ [\tilde{U}_{+}^{\mathsf{II},\mathsf{Hy}}] & [\tilde{W}_{+}^{\mathsf{II},\mathsf{Hy}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Hy}}] & [\tilde{W}_{-}^{\mathsf{II},\mathsf{Hy}}] \end{pmatrix} \end{pmatrix} \begin{pmatrix} [\tilde{C}_{+}^{\mathsf{II}}] [[\exp(\gamma_{+}^{\mathsf{II}}z)]] \\ [\tilde{C}_{-}^{\mathsf{II}}] [[\exp(\gamma_{-}^{\mathsf{II}}z)]] \\ [\tilde{C}_{-}^{\mathsf{II}}] [[\exp(\gamma_{-}^{\mathsf{II}}z)]] \end{pmatrix} \end{pmatrix}$$

 The convergence of the solution to the eigenvalue-eigenvector problem depends on the truncation number of spatial frequencies in the computation.

• Here, the modes are sorted into positive and negative directions, as preparation for later use in the S-matrix. We write the expression above in the following, more compact, form:

$$\left(egin{array}{c} ilde{m{E}}_{\perp} \ ilde{m{H}}_{\perp} \end{array}
ight) = \left(egin{array}{c} extbf{W}_{11} & extbf{W}_{12} \ extbf{W}_{21} & extbf{W}_{22} \end{array}
ight) \left(egin{array}{c} extbf{C}_{+} \ extbf{C}_{-} \end{array}
ight) \,.$$

Solver Algorithm – S-Matrix



The task of the S-matrix is to compute the coefficients that connect the field in front of and behind the layered slab:

$$\left(egin{array}{c} m{C}_{+}^{(n)} \ m{C}_{-}^{(0)} \end{array}
ight) = \left(egin{array}{c} m{S}_{11}^{(0,n)} & m{S}_{12}^{(0,n)} \ m{S}_{21}^{(0,n)} & m{S}_{22}^{(0,n)} \end{array}
ight) \left(egin{array}{c} m{C}_{+}^{(0)} \ m{C}_{-}^{(n)} \end{array}
ight) \,.$$

• At the surface with index (j), based on the boundary conditions, it is not hard to write down the following relation

$$\begin{pmatrix} \mathbf{W}_{11}^{(j)} & \mathbf{W}_{12}^{(j)} \\ \mathbf{W}_{21}^{(j)} & \mathbf{W}_{22}^{(j)} \end{pmatrix} \begin{pmatrix} \mathbf{C}_{+}^{(j)} \\ \mathbf{C}_{-}^{(j)} \end{pmatrix} = \begin{pmatrix} \mathbf{W}_{11}^{(j+1)} & \mathbf{W}_{12}^{(j+1)} \\ \mathbf{W}_{21}^{(j+1)} & \mathbf{W}_{22}^{(j+1)} \end{pmatrix} \begin{pmatrix} [\mathbf{\Phi}_{+}^{(j+1)}]^{-1} & 0 \\ 0 & [\mathbf{\Phi}_{-}^{(j+1)}]^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{C}_{+}^{(j+1)} \\ \mathbf{C}_{-}^{(j+1)} \end{pmatrix} .$$

• By applying the boundary conditions at each surface, a recursive relation can be found to relate the field in front of and behind the layered slab in the form below

$$\left(\begin{array}{c} \boldsymbol{C}_{+}^{(n)} \\ \boldsymbol{C}_{-}^{(0)} \end{array} \right) = \left(\begin{array}{c} \mathbf{S}_{11}^{(0,n)} & \mathbf{S}_{12}^{(0,n)} \\ \mathbf{S}_{21}^{(0,n)} & \mathbf{S}_{22}^{(0,n)} \end{array} \right) \left(\begin{array}{c} \boldsymbol{C}_{+}^{(0)} \\ \boldsymbol{C}_{-}^{(n)} \end{array} \right) \,.$$

- There are different variations to derive the recursive relation. In VirtualLab Fusion, we follow the W→t→S variation, according to [4, 5].
- Other recursion variations will become available in VirtualLab Fusion in future.

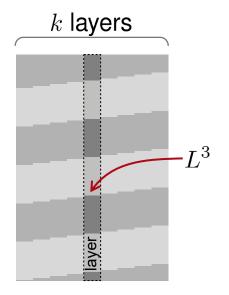
Numerical Complexity

• The total number of spatial frequencies for each layer can be calculated as

 $L = (2N+1) \times (2M+1),$

(2N+1), (2M+1) being the number of spatial frequencies in each of the two dimensions, for general cases.

- Considering the typical numerical operations (e.g., matrix eigenvalue problem, matrix multiplication or inversion), the counts of FLOPs in the FMM/RCWA can be roughly estimated as being proportional to L^3 .
- An arbitrary grating structure may consist of several layers. Let us denote the number of layers by k, then the total counts of FLOPs in the FMM/RCWA can be roughly estimated as kL^3 .



Numerical Complexity

• Considering a dielectric rectangular grating along x, with varying period d_x , to ensure numerical convergence at least 50 evanescent spatial frequencies must be considered in the computation. Then, we can estimate the FLOPs

_			
	d_x/λ	L = (2N+1)	L^3 (~FLOP counts)
	1	53	148,877
	10	71	357,911
	50	151	3,442,951
_			

• For a 2D pillar grating, with varying periods d_x and d_y , we always ensure at least 10 evanescent spatial frequencies in both directions are considered, then we can estimate the FLOPs

$d_x/\lambda,\ d_y/\lambda$	$L = (2N + 1)$ $\times (2M + 1)$	L^3 (~FLOP counts)
1, 1	13×13	4,826,809
10, 10	31×31	887,503,681
100, 100	211×211	88,245,939,632,761

Usage in VirtualLab Fusion

 To apply the FMM/RCWA solver in VirtualLab Fusion, the permittivity distribution

$$\epsilon(\boldsymbol{\rho}, z) = \epsilon(\boldsymbol{\rho} + \boldsymbol{d}, z)$$

must be specified first. Here, $d = (d_x, d_y)$, with d_x and d_y the **period** along x and y respectively.

- There are two ways to define it
 - direct specification of the refractive index distribution $n({oldsymbol
 ho},z),$ or
 - using surfaces with profiles $h_j(\rho)$ and filling materials with constant n_j .

for gratings made of isotropic media.

1	n(x	,z) =	$\sqrt{\epsilon(x)}$	$\overline{(z,z)}$		x Base Block
	Index	z-Distance	z-Position	Interface	Subsequent Medium	Com
Þ	1	0 mm	0 mm	Plane Interface	Slanted Grating Mediu	Enter your commen
	2	1 μm	1 μm	Plane Interface	Homogeneous Medium	Enter your commer
						>
	alidity: (eriod	9			Add Insert	> Delete
Va Pe	eriod	Period is	Dependent	from the Period of Mediu		

direct refractive index distribution

Usage in VirtualLab Fusion

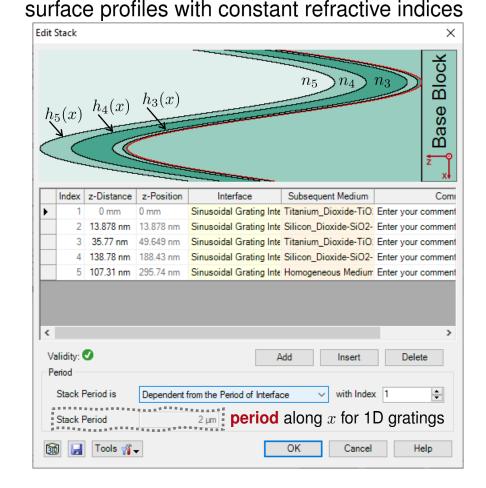
 To apply the FMM/RCWA solver in VirtualLab Fusion, the permittivity distribution

$$\epsilon(\boldsymbol{\rho}, z) = \epsilon(\boldsymbol{\rho} + \boldsymbol{d}, z)$$

must be specified first. Here, $d = (d_x, d_y)$, with d_x and d_y the **period** along x and y respectively.

- · There are two ways to define it
 - direct specification of the refractive index distribution $n({oldsymbol
 ho},z),$ or
 - using surfaces with profiles $h_j(\rho)$ and filling materials with constant n_j .

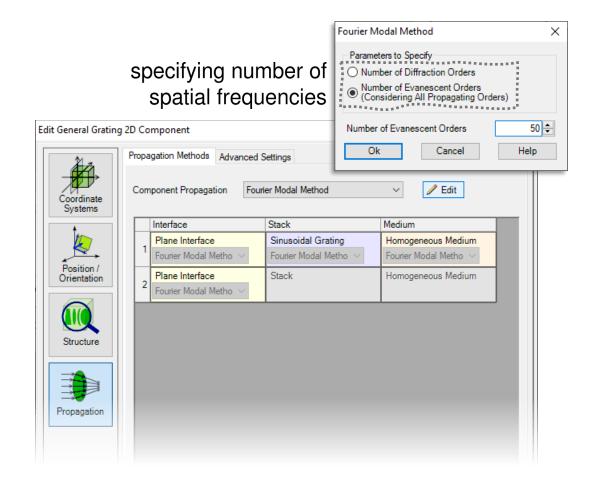
for gratings made of isotropic media.



12

Usage in VirtualLab Fusion

- The truncation **number of spatial frequencies** (often referred to as the **number of diffraction orders**), plays a role in the convergence behavior in the computation.
- There are two ways to specify this number
 - directly definining the total number of spatial frequencies, or
 - including all the propagating orders, plus a certain number of additional evanescent orders.
- The preset number in VirtualLab Fusion gives good convergence for most dielectric gratings; however, for metal gratings, an additional convergence test is recommanded.



List of References

- [1] Lifeng Li, "<u>New formulation of the Fourier modal method for crossed surface-relief gratings</u>," J. Opt. Soc. Am. A 14, 2758-2767 (1997)
- [2] Evgeny Popov and Michel Nevière, "<u>Maxwell equations in Fourier space: fast-converging formulation</u> for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A 18, 2886-2894 (2001)
- [3] Lifeng Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996)
- [4] Lifeng Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996)
- [5] Lifeng Li, "Note on the S-matrix propagation algorithm," J. Opt. Soc. Am. A 20, 655-660 (2003)

title	VirtualLab Fusion Technology – FMM /RCWA [S-Matrix]	
document code	TEC.0003	
version	1.0	
category	Technology White Paper	
further reading	 VirtualLab Fusion Technology – Layer Matrix [S-Matrix] VirtualLab Fusion Technology – Idealized Grating Functions Thin Element Approximation (TEA) vs. Fourier Modal Method (FMM) for Grating Modeling Analysis of Slanted Gratings for Lightguide Coupling Rigorous Analysis of Nanopillar Metasurface Building Block 	