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Abstract

This paper explores the topic of metalenses, which has recently gained consid-
erable attention. Metalenses are a distinct class of flat lenses, alongside diffrac-
tive and Fresnel lenses. We present the concepts and showcase the capabilities
of VirtualLab Fusion software for simulating and designing metalenses. The
techniques and features introduced are scheduled to be released in 2025. Reach
out to support@lighttrans.com for additional release details and any inquiries
you may have concerning metalens design and modeling.

This paper derives from the transcript and slides of the webinar "Let’s Talk
About Metalenses," presented by Frank Wyrowski at the Photonics Media we-
binar on May 29, 2024. Consult the slides.pdf file to view all slide images.
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1 Introduction

Slides #4–5

At LightTrans International, we create the VirtualLab Fusion optics software and
distribute it worldwide through our network of distributors. VirtualLab Fusion
serves as a multiscale optical simulation platform developed to manage a wide
variety of optics and photonics applications, with flat lenses being just one example.
This paper highlights the potential of VirtualLab Fusion in the field of flat lenses.
As software developers, it is our responsibility to offer our continuously expanding
customer base robust design and modeling tools to assess and implement metalenses
and other flat lenses in practical applications. In this article, we explore certain tasks
and challenges faced during the integration of flat lenses into the modeling and design
of lens systems in software development.

Slides #6–7

Given that optics software relies on precise and reliable simulation models, it is essen-
tial for us as developers to thoroughly explore the subject and gain a comprehensive
understanding of the fundamental physics. This inevitably brings us to some mathe-
matical analyses and equations, which are essential for a serious discussion. However,
because these mathematical techniques will be integrated into VirtualLab Fusion,
users engaged in practical tasks with VirtualLab Fusion are not required to possess
detailed knowledge of the fundamental physics involved. Alongside an exploration of
theoretical concepts, this paper will include various example simulations and designs.

In wrapping up the introductory remarks, we would like to stress that at Light-
Trans International, we maintain an unbiased stance regarding the significance of flat
lenses. Our mission is to equip you with robust software tools that enable you to
investigate the significance and use of flat lens technology in your work.

Figure 1: Slide #6

2



2 Multiscale Optical Simulation

Slides #9–10

Metasurfaces employ nanostructures with a high refractive index, commonly known
as meta-atoms or metacells, arranged on a substrate that has a lower refractive index.
This approach has been recognized for a while [2], but it has recently gained renewed
interest [3]. For an initial insightful read, consult the review authored by Lalanne and
Chavel [4]. In addition, the informative tutorial by Yang Fan et al. is recommended,
which includes numerous additional references [6].

Slides #11–12

Given that metasurfaces are composed of nanostructures, it is clear that a geometrical
optics approach is unsuitable. Instead, it is necessary to utilize electromagnetic field
theory based on Maxwell’s equations, commonly known as physical optics. Thus,
incorporating metalenses or other flat lenses into a lens system, together with con-
ventional lens surfaces and other components, creates a multiscale system. This
requires an approach to optical modeling that spans multiple scales, often referred to
as multiscale optical simulation. To put it plainly and emphatically: achieving
multiscale simulation is not possible by linking various optics software tools through
data interfaces. Rather, a comprehensive strategy is required, grounded in a sophis-
ticated formulation of the physical optics foundation for optics software. Modeling
optical systems across different scales requires the integration of many and di-
verse simulation models within a unified physical optics framework. This
is the approach that we take with our VirtualLab Fusion software.

Figure 2: Slide #14

Slides #13–15

Among various other technological innovations in VirtualLab Fusion, the advance-
ment of geometrical optics for electromagnetic fields enables its smooth incorporation
with other physical optics simulation techniques. To achieve this, we adhered to the
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guidance provided several decades ago by Max Born and Emil Wolf [1]. They strongly
advised expanding the foundations of geometrical optics to include electromagnetic
fields. By employing our unified approach for multiscale simulation, we can seamlessly
link the geometrical optics modeling of a traditional lens surface with the sophisti-
cated simulation model for a metalens. This leads to unparalleled speed in multiscale
simulation when utilizing VirtualLab Fusion.

Figure 3: Slide #17

Slides #16–21

An illustrative scenario for wafer inspection demonstrates the application of multi-
scale simulation using VirtualLab Fusion. The simulation models for lenses and a
grating are connected in a non-sequential multiscale simulation. Although this simu-
lation is entirely based on a physical-optics framework, it conveniently provides access
to ray data. Ray data are derived from the subset of geometrical optics for electro-
magnetic fields within the physical optics framework. In the focal region, the light
strikes the wafer structure and the reflected light travels back through the lens system
to form the image. The outcome is illustrated for the wafer positioned precisely in
the focal plane and also when the wafer is slightly displaced from the focus. The
simulation time is a few seconds on a standard laptop. As demonstrated in this ex-
ample, VirtualLab Fusion enables fast modeling of multiscale systems by connecting
different simulation models.

Slide #22

The primary challenge in integrating metalenses into the multiscale simulation frame-
work of VirtualLab Fusion is creating a metalens simulation model that can seamlessly
interact with the simulation models of other components, such as traditional lenses.
Before we explore our approach to addressing this challenge, we address the question:
What are the expected results of integrating flat lenses into optical design?
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3 Application Potential of Flat Lenses

Slides #24–29

To address this question, we present some basic observations. To generate the im-
age of an object point, such as the axial object point, we design a suitable surface.
Replacing this surface with a flat lens does not alter the distances to the object and
image planes. As a result, flattening the lens does not decrease the length of the
system. Next, we add another object point, which requires a distinct surface for
accurate imaging. A single surface cannot accurately image multiple object points.
Therefore, adding more surfaces to correct aberrations is crucial, a concept well rec-
ognized in lens design. There is no evidence to suggest that flat lenses eliminate this
requirement. To gain further insight, we consider the design of a beam expander.
In this case, an initial lens is necessary to transform the incoming planar phase into
either a converging or diverging spherical phase. The divergent case is demonstrated.
A second lens is utilized to collimate the incoming light. Thus, the use of two lenses
is necessary. The degree of beam expansion is governed by the distance d between
the lenses and their numerical apertures. Flattening the lenses does not change that
outcome.

Figure 4: Slide #42

Slides #30–40

Based on these observations and additional factors, we arrive at the following con-
clusions. Flat lenses reduce both the thickness and weight of the lenses. The thin
design of flat lenses allows for more possibilities in reducing the distance between
lens surfaces. The thickness of conventional lens surfaces limits how close they can
be placed to each other. This restriction is removed when using flat lenses. The fab-
rication methods for flat lenses vary from those for traditional lenses, which may offer
benefits in specific scenarios. Flat lenses could provide new opportunities for switch-
able lenses. Replacing thick lens surfaces with flat surfaces changes the aberration
dynamics in the system, which may enhance aberration correction possibilities based
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on the particular scenario. Employing diffractive lenses, which exhibit strong and
opposing chromatic aberrations, to counteract the chromatic aberrations of smooth
lens surfaces serves as a well-documented instance of this potential. Some charac-
teristics of flat lenses, such as its polarization-sensitive function, may be considered
beneficial or detrimental depending on their use. Later in this article, we present an
example that illustrates the application of polarization sensitivity. Considering these
observations, there is no indication that flat lenses, including metalenses, decrease
the overall length of the system or the number of lens surfaces in optical systems
beyond the capabilities of aspherical and freeform surfaces.

Slides #41–42

This implies that the slim profile of flat lenses is the key factor in their potential for
miniaturization. Nothing more, nothing less. Ultimately, flat lenses offer a notable
and intriguing addition to the array of tools for optical design. The usefulness of flat
lenses changes significantly based on the context of their application. In conclusion,
it is crucial to integrate flat lens technology into lens design workflows to fully com-
prehend and utilize their capabilities. It is time to practically evaluate the potential
of flat lenses and move beyond mere theoretical debates.

As mentioned before, the primary challenge in integrating metalenses into a multi-
scale modeling framework is creating a metalens simulation model that can seamlessly
interact with the simulation models of other components, such as traditional lenses.
Next, we will explore the solution to this challenge.

4 Interoperable Simulation Model for Metalenses

Slide #44

Lens systems convert wavefronts originating from object points into wavefronts that
create the image points. Wavefronts are mathematically represented by their corre-
sponding phase function ψ(r), which we call the wavefront phase. The wavefront
phase is of pivotal importance in both the design and simulation of lens systems.

Slide #45

In geometrical optics, the wavefront phase is directly connected to the local ray
direction vector ŝ through the equation

ŝ⊥(r) =

{
∇⊥ψ

}
(r)

k0n
(1)

where ⊥ represents the x and y components, and sz is determined by ∥ŝ∥ = 1.

Slide #46

In physical optics, the wavefront phase retains its crucial significance. It
is now integrated into the electric field vector E(r) through

E(r) = U(r) exp[iψ(r)] (2)
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with
Uℓ(r) := |Eℓ(r)| exp[i argUℓ(r)] (3)

for the components ℓ = x, y, z. In multiscale optics simulations, ψ is utilized as a
continuous and smooth phase that is shared across all components. The electric field
components can possess extra phases argUℓ, such as a vortex associated with an
angular momentum beam.

Slide #47

For instance, the phase of a Gaussian-Laguerre (0,1) beam after propagation can be
broken down into a spherical wavefront phase and a phase dislocation. The separation
of the wavefront phase from other phase contributions of the electric field components
is one of several concepts that endow VirtualLab Fusion with its exceptional lens
modeling capabilities.

Slide #48

Next, we examine the manner in which a lens alters the wavefront phase. Con-
ventional lenses modify the wavefront phase through the optical path length (OPL)
between their surfaces. The phase is derived from the OPL through

ψ = k0OPL . (4)

This outcome is equally valid in the realm of physical optics. The resulting phase is
continuous and is not expressed as modulo 2π, which means that it is unwrapped.
The variation in the wavefront phase ψ is independent of the polarization of the elec-
tric field! From a simulation perspective, this represents a highly relaxed numerical
scenario.

Figure 5: Slide #49

Slides #49–52

We now consider the scenario involving a flat lens. The influence of the flat lens on
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the field at any location on its planar surface can be characterized by

Eout
⊥ = MEin

⊥ , (5)

with E⊥ = (Ex, Ey) and the quadratic matrix

M =

(
Mxx Mxy

Myx Myy

)
. (6)

In the subsequent discussion, the z-component of the field is irrelevant, and for the
sake of simplicity, we omit the ⊥ symbol. The values of the matrix M can be ob-
tained using any suitable simulation model of the flat lens surface. Specific decisions
regarding the surface structure and the flat lens and an appropriate simulation model
for M will be addressed later in this article. Now we concentrate on the effect of the
flat lens on the wavefront phase of the incoming field. The subsequent analysis of the
impact of a flat lens on the wavefront phase applies to any kind of flat lens and to
the simulation model chosen for the matrix M. Thus, we proceed with this analysis.

Figure 6: Slide #54

Slide #53

The wavefront phase ψin of the incoming field, can be explicitly separated from the
matrix multiplication, leading to the expression

Eout = Uout exp[iψout] =
(
MU in

)
exp[iψin] . (7)

where
ψout = ψin +Ψ. (8)

The phase Ψ represents the change in the wavefront phase of the input due to the
flat lens. In the case of flat lenses, the phase Ψ is not determined by an OPL between
the lens surfaces, but must be derived from the matrix effect on the input field,
represented as MU in. Given the critical importance of the phase Ψ in lens modeling
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Figure 7: Slide #56

and design, it is essential to develop a robust method to calculate phase Ψ using
MU in.

Slides #54–55

The essential factors that define M, and consequently the wavefront phase response
Ψ, include the local structure defined by the parameter vector p, here for two types
of metacells, the direction of local incidence ŝin, and the wavelength λ. It is im-
portant to highlight that in both physical and geometrical optics, the local direction
vector is determined in an identical manner. To summarize our understanding of the
dependencies of the matrix, we express the matrix as a function of the structural pa-
rameters, the local incidence direction vector, and the wavelength. Mathematically,
the matrix’s dependencies are denoted by M(p; ŝin, λ). In the realm of metalens
modeling and design, possessing an in-depth understanding of the matrix values is
absolutely paramount. This knowledge spans across the parameter space, the di-
rectional domain, and the wavelength range. We would like to highlight that any
approach you encounter in the optics software sector that lacks the use of the full
modeling matrix across necessary structure parameters, directions, and wavelength
domains is not adequately advanced to provide the essential tools for investigating
the potential of flat optics in your applications. Therefore, we compute all matrix
values M(p; ŝin, λ) in the parameter space for a chosen type of metacell structure,
the pertinent direction domain, and the applied wavelength range. These matrix val-
ues function as nodes within a neural network, connecting the parameter space, the
directional domain, and the wavelength range. This neural network encapsulates all
the modeling and design data for a metalens with a specific metacell configuration.

Slide #56

It is important to note that this network needs only to be computed once for each type
of metacell structure. Employing advanced modeling methods on a typical laptop,
the time required to set up the neural network varies from a few hours to several days,
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Figure 8: Structure specifications of metacells for example calculations. See also
slide #58

depending on the number of nodes involved. VirtualLab Fusion supports distributed
computing, which allows for an almost linear decrease in computation time with the
addition of more clients. In summary, the network computation is not a practical
limitation in flat optics modeling and design. Going forward, we will operate under
the assumption that the network is already established and prepared to furnish all
necessary details regarding the matrix elements.

Slide #57

With the network established, we now address the task of determining the wavefront
phase response Ψ of a metalens. First, we must grasp the essence of the task before
us. For clarity, the discussion will focus on a single wavelength. Given a particular
U in, the network supplies the magnitudes

|
{
M(p; ŝin)U in

}
x
| and |

{
M(p; ŝin)U in

}
y
| (9)

and the phases

arg
{
M(p; ŝin)U in

}
x
and arg

{
M(p; ŝin)U in

}
y
. (10)

Slides #58–62

Next, we examine multiple scenarios in which we utilize two types of metacells based
on the specifications in Fig. 8, along with different input polarizations. In this initial
example, illustrated in Fig. 9, we use linearly polarized light to evaluate the ampli-
tude results for the pillar metacell and the nanofin metacell, each characterized by
different structural parameters. Figure 11 depicts the phases. The results for the
nanofin structure reveal significant differences between the x and y components, un-
like those observed in the pillar cell. Next, we alter the incident light from linear to
circular polarization and examine the resulting amplitudes and phases. The results
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Figure 9: This illustration shows the variation in the magnitudes of the x- and y-
components of the field following its interaction with the metacell on the left. The
variation occurs by varying the structural parameter throughout its specified range.
The input vector for the field is U in = (1, 1)T , representing linearly polarized light,
while the initial direction is ŝin = 0.Structure specifications of metacells for example
calculations. See also slide #59

are shown in Fig. 11 and 12. The phase value curves for the x- and y-components of
both metacell types seem to be mainly shifted but otherwise remain similar or almost
identical. The data presented in Figs. 9-12 suggest that accounting for the polariza-
tion effects in metacells is generally essential. This raises the question of deciding
which phase should be recognized and handled as the wavefront phase response Ψ.
The x- and y-components are two clear options. However, what should be done if
they differ?

Slides #63–65

From a mathematical perspective, we must choose a suitable candidate Ψc.c. for the
wavefront phase response and extract it from the outcome of the matrix multiplication
M(p; ŝin)U in. As a result, we obtain the residual phase components

∆ψℓ(p) := arg
{
M(p; ŝin)U in

}
ℓ
−Ψc.d. (11)

where ℓ = x, y. The candidate’s quality should be assessed based on the residual
phase left, taking into account the magnitudes of the components. Without delving
into the detailed definition, it is sufficient to state that we use a secondary momentum
criterion on the phase residuals to evaluate the quality of a candidate. The quality
measure is represented by a single value, denoted as σ2. Figure 13 provides the met-
ric values for the examples shown before. This table presents the σ2 values for the
previously discussed examples, utilizing the phase of either the x- or y-component
from the result of the matrix multiplication as the wavefront phase candidate. The
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Figure 10: This illustration shows the variation in the phases of the x- and y-
components of the field following its interaction with the metacell on the left. The
variation occurs by varying the structural parameter throughout its specified range.
The input vector for the field is U in = (1, i)T , representing linearly polarized light,
while the initial direction is ŝin = 0. See also slide #60

Figure 11: This illustration shows the variation in the magnitudes of the x- and
y-components of the field following its interaction with the metacell on the left. The
variation occurs by varying the structural parameter throughout its specified range.
The input vector for the field is U in = (1, i)T , representing circularly polarized
light, while the initial direction is ŝin = 0.Structure specifications of metacells for
example calculations. See also slide #61
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Figure 12: This illustration shows the variation in the phases of the x- and y-
components of the field following its interaction with the metacell on the left. The
variation occurs by varying the structural parameter throughout its specified range.
The input vector for the field is U in = (1, 1)T , representing circularly polarized
light, while the initial direction is ŝin = 0. See also slide #62

σ2 values clearly demonstrate the significant polarization dependence of the nanofin
structure. It is evident that in the case of linear polarization, both candidates are
inadequate for nanofin metacells, and without a suitable wavefront phase, designing
the metalens is unfeasible! This outcome emphatically illustrates that the straight-
forward method of choosing the wavefront phase as either the x- or the y-component
from the matrix multiplication result M(p; ŝin)U in is inadequate for the design and
modeling of metalenses in any serious software development endeavor. This simplistic
approach falls short of providing a robust and reliable foundation, highlighting the
necessity for more sophisticated and nuanced methods to achieve viable and effective
metalens modeling and designs. Consequently, we propose a technique for the design
and simulation of metalenses that fully leverages the capabilities of the established
neural network.

Slides #66-67

It is important to recall that the nodes in the network are represented by the matrix
values, which are computed based on a selected metacell geometry and parameter
space. To perform this computation, an appropriate simulation model needs to be
utilized. Given that each meta-atom is surrounded by neighboring meta-atoms, the
matrix analysis is conducted not on a single, isolated meta-atom, but rather on a
meta-atom that is replicated periodically. This leads to the formation of a sub-
wavelength grating, where the metacell serves as the periodic unit for analysis. The
analysis of this metacell grating employs the Fourier Modal Method (FMM), also
known as RCWA. We call this effective technique the Periodic Cell Approximation
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Figure 13: The table displays the σ2 values, utilized for assessing the phase response
quality. Lower values indicate better performance compared to higher values. Refer
also to slide #66.

Figure 14: The table reveals the vector bases for the two metacell configurations,
derived from training the neural network. Refer also to slide #69.

(PCA). In Sections 7 and 8, we examine the precision of PCA and demonstrate
ways to advance the simulation of a metastructure to set up the neural network.
In the following discourse of this section, we employ the PCA method; however, all
discussions and conclusions hold true even if we opt for an alternative approach.

Slides #68–69

In the subsequent step, we train the network to identify an orthogonal vector basis
W 1 and W 2, which yields the optimal wavefront phase candidates Ψc.d.

1 and Ψc.d.
2

by minimizing σ2. Upon completion of neural network training, the mode and phase
candidate outcomes are embedded within the network, making it ready for applica-
tion. Training of the network for our two example structures reveals the orthogonal
bases shown in Table 14. As software developers, it is crucial for us that this neural
network training concept provides a fully automated technology. It allows any user
to choose one or more metacell geometries and initiate the training process, which
produces everything required for successful metalens modeling and design.
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Figure 15: Slide #68

Slide #70

To transmit the incident light through the metalens, the initial field is first decom-
posed into the modes supplied by the network, and we obtain

Ein = U in exp[iψin]

=
{
V in
1 W 1 + V in

2 W 2

}
exp[iψin] .

(12)

The network training has already resolved the modeling for both modes, allowing us
to derive the output field:

Eout = Uout
1 exp[i

{
ψin +Ψ1

}
] +Uout

2 exp[i
{
ψin +Ψ2

}
]

= Uout exp[i
{
ψin +Ψ

}
] , ifΨ1 = Ψ2 =: Ψ

(13)

Typically, this field is composed of two modes; however, when the polarization de-
pendency is minimal, the phases may align, allowing a single mode to adequately
represent the output field. The potential presence of two modes in metalens model-
ing is not surprising. This phenomenon is also observed in birefringent media. The
polarization effects observed for nanostructured surfaces, even when fabricated in
isotropic media, are also referred to as form birefringence[1].

Slides #71–72

In Eq. 13, the candidate notation is deliberately left out, as there remains a noticeable
distinction between the wavefront responses represented in Eq. 13 and those provided
by the neural network. The phases Ψc.d.

j (ρ) are not yet in the form of a wavefront
phase, since they are in the form of 2π-modulo. In addition, they may include some
contributions which do not belong to a smooth wavefront phase, e.g., because they
cannot be unwrapped like a phase vortex, as it is shown in Fig. 16. Thus, in a final
step, the phase Ψc.d.

j (ρ) is unwrapped and filtered. We refer to this operation as Θ
and obtain (

Θ
{
Ψc.d.

j mod 2π
}
(ρ)

)
= Ψj(ρ) + ∆Ψj(ρ; Θ)mod 2π . (14)
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Figure 16: Example of the difference between the candidate phase and the resulting
wavefront phase response. See also slide #71.

The method relies on spline interpolation techniques that were explored by Badar [5].
Through this unwrapping and filtering procedure, the output field for both modes j
can be represented as

Eout
j (ρ) = Uout

j (ρ) exp[iψin(ρ) + Ψj(ρ)] , (15)

with the smooth and unwrapped phase ψout(ρ) = ψin(ρ) + Ψ(ρ) and

Uout
j (ρ) =

= Vj(ρ)

{∣∣(MW j

)
x

∣∣(ρ)} exp[i∆ψj,x(ρ) + i∆Ψj(ρ; Θ)]{∣∣(MW j

)
y

∣∣(ρ)} exp[i∆ψj,y(ρ) + i∆Ψj(ρ; Θ)]

 .
(16)

5 Design of Metalenses

Slide #74

Next, we examine the creation of a metalens using the trained neural network as a
foundation. The design is feasible for only one mode, provided that the modes have
different wavefront phase responses. Thus, one of the two modes must be selected
for the design. For this mode, the metalens is expected to generate a designated
wavefront response Ψ(ρ). Thus, initially this wavefront response must be selected.
This can be achieved using various methods familiar in lens design, such as the
configuration of a thin lens system. Alternatively, one could start by selecting a thick
lens surface within a lens system that should be substituted with a metalens. In
this scenario VirtualLab Fusion can determine the required wavefront phase response
Ψ(ρ).

The process of design can be entirely entrusted to the neural network, as it con-
tains comprehensive details on the relationship between the produced phase value and
the structural parameters within the metacell. During the design phase, the struc-
tural parameters for each metacell are determined depending on its lateral placement
on the planar lens surface. In the concluding stage, the manufacturing data, for
instance, in GSDII format, is generated.
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Figure 17: Slide #74

Slide #75

The simulation and design techniques are incorporated into our proprietary Virtual-
Lab Fusion software. These advanced techniques are planned to be released to the
public in the upcoming 2025 software updates. In what follows, we would like to
delve into some truly outstanding example demonstrations, which are done with our
proprietary VirtualLab Fusion software.

6 Design Examples and Simulations

Slide #77

We start with a pillar-type focusing metalens. Here, you can find the specifications
along with a segment of the GDSII data for the lens. By employing the neural
network, the lens design is completed within two seconds. Approximately 7500 by
7500 metacells are arranged across the lens, which has a diameter of three millimeters.

Slide #78

The ray distribution within the system is obtained as one result of the multiscale
simulation.

Slides #79–82

The simulation also provides the magnitudes of the field and irradiances at the focal
plane dependent on the polarization of the input field. In this example, as well as all
subsequent ones, the simulation time ranges from approximately 10 seconds to less
than a minute on a standard laptop. The PCA model estimates the efficiency to be
around 94 percent. We will observe later in Sect. 7 that this estimate is somewhat
overly optimistic.
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Figure 18: Slide #82

Slides #83–84

By carefully analyzing the wavefront phase response of the metalens using the neural
network, we can also examine the aberrations caused by the metalens when using an
off-axis input field.

Figure 19: Slide #87

Slides #85–88

For the off-axis plane input field, the multiscale simulation provides the dot diagram,
the field magnitudes, and the irradiance at the focal plane.

Slides #89–94

Next, we substitute the pillar-type metacell with a nanofin-type metacell. The design
is done for one of the orthogonal modes, here for the right circularly polarized field.
Then, similar simulations are performed as in case of the pillar-type cell. We obtain
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ray distributions and the magnitudes after the lens. Due to high-frequency modu-
lation, a Moire effect leads to a somewhat unusual appearance. A closer inspection
uncovers the high-frequency modulation. This arises from the amplitude modulation
across the parameter space, which we noted during our discussion on the neural net-
work. The modulation causes a slight reduction in efficiency. The field magnitudes
at the focal plane and the irradiance can also be readily calculated.

Slides #95–96

We now switch the circular input polarization from right to left, and the impact on
the ray distribution is clearly visible. The lens exhibits a divergent behavior! The
calculation of the irradiance in the same plane as before confirms this result.

Figure 20: Slide #99

Slides #97–101

In the next example, we substitute an aspherical lens surface in this beam expander
setup with a pillar-type metalens. VirtualLab Fusion automatically determines the
required phase response for the metalens after the surface to be replaced is selected.
The metalens spans nearly 5 mm in diameter and comprises 12000 by 12000 metacells,
ensuring its functionality. The trained neural network completes the design in 7
seconds. The performance of the metalens is showcased by the irradiance behind the
lens and the calculated vectorial PSF.

Slides #101–104

Concluding the simulation examples, we demonstrate a design in which the two modes
of the nanofin metacell structure are utilized to create a bifocal lens system. We begin
with a spherical lens positioned after the metalens. Then, the multiscale simulation
approach provides ray results, which show clear spherical aberrations for both modes.
This example demonstrates that our approach enables the incorporation of metalenses
into optical lens systems, offering thorough access to aberration analysis.

19



Figure 21: Slide #108

Slides #105–109

Next, we design an appropriate aspherical lens and conduct the experiment again.
For the mode with right circular polarization, the focal point is observed at the first
detector location. When switched to the left circularly polarized mode, the focal
point moved to the second position. When the input light is linearly polarized, both
modes are produced in the output, resulting in two focal points. The metalens allows
for the extra encoding of a phase dislocation, resulting in the irradiance dropping to
zero at the center of the focal points.

The examples provided showcase the abilities of our advanced metalens technol-
ogy, which we have developed and incorporated into VirtualLab Fusion, set for public
release by 2025.

7 Limitations of the PCA Simulation Model and its Fur-
ther Developments

Slides #111–114

Next we take a closer, more critical examination of the Periodic Cell Approximation
(PCA). In the PCA, it is assumed that neighboring metacells are identical. Prac-
tically, each metacell is encircled by additional metacells, which differ in structural
parameters to varying degrees, thus interrupting the periodic cell condition to some
extent. This situation arises particularly when a cycle of the lens zones is completed,
causing the structural parameters to revert to their initial values. This results in
discontinuities in the structure, leading to the production of additional stray light,
a phenomenon that is also well recognized in diffractive lenses. Thus, the challenge
lies in effectively integrating the neighboring metacells in a simulation model to more
precisely represent the structural discontinuities. For such a model, it is crucial to
account for the structural jumps. Simply including immediate neighbors is insuffi-
cient to improve accuracy. We propose using a local metagrating approximation
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(LMGA), akin to the modeling of diffractive lenses. This method not only provides
high computational efficiency, but also distinguishes the stray light from the desired
light in additional orders. These extra orders have clearly defined wavefront phases.
That enables the propagation of the light per order through the lens system, in ad-
dition to the intended light. This fact holds particular significance if a metalens is
integrated into a lens system. Then it is crucial to assess the impact of stray light,
characterized by additional orders, on the image plane, for instance, on the PSF.

Figure 22: Slide #114

Slide #115

The rigorous Fourier Modal Method (FMM), also known as RCWA, is employed for
analyzing the local gratings. The differences in results between PCA and LMGA
can be systematically analyzed by generating metagratings with PCA and subse-
quently simulating them using both the rigorous Fourier Modal Method and PCA for
comparison.

Slides #116–129

We have carried out this procedure and obtained the results shown in Tab. 23 for
the pillar-type metacells. We created metagratings with a period that decreases,
expressed in the table as multiples of the wavelength. We also specify the maxi-
mum numerical aperture of the lens that can be designed with this period. Next,
we present the efficiency of each grating in directing light into the intended order,
contrasting the results obtained using PCA and FMM. Subsequently, we show the
same analysis for the reflected light. In the final column, we present the efficiency
of all higher transmitted orders as calculated using the FMM. We present a compar-
ison of computed wavefront phase responses, showcasing results for both PCA and
FMM as detailed in the slides. Consider the results starting with the largest period.
The results obtained from PCA closely resemble those from FMM, although FMM
exhibits a marginally lower efficiency. As anticipated, a slight phase deviation occurs
at the structural discontinuity. Reducing the grating period further confirms that
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Figure 23: The table gives an overview of a comparing the diffraction efficiencies of
metagratings, when analyzed with the PCA and the LMGA. The gratings are all
designed using the PCA. Refer also to slides #117-129.

while PCA predicts phase values well, it does not effectively account for stray light
in higher reflected and transmitted orders. When the grating period approaches the
wavelength of light, entering the resonance domain, PCA becomes ineffective. The
response becomes also highly polarization dependent. The resonance region of lo-
cal gratings is unsuitable for lens design, thereby restricting the highest achievable
numerical aperture of the lens.

Figure 24: Slide #132

Slides #130-132

We summarize the results:

• The PCA offers high precision in phase modeling and design outside of the
resonance domain of local gratings.

• PCA is unable to forecast the emergence of stray light in higher-order reflections
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Figure 25: Slide #137

and transmissions.

• The Local Metagrating Approximation (LMGA) can achieve this.

We plan to integrate a tool into our VirtualLab Fusion software to conduct grating
analyses similar to the previous example, applicable to metagratings regardless of the
type of metacells used. This allows gaining a preliminary insight into the capabilities
of the chosen metacell. In addition, we enhance the neural network by incorporat-
ing the Local Metagrating Approximation simulation model, allowing it to execute
the extended modeling as well. The local grating approximation concept has been
integrated into and utilized for diffractive lenses within VirtualLab Fusion.

8 “Roughness” of Metalenses

Slides #135–137

At the conclusion of this article, we would like to provide a quick overview of our
strategy to advance the model further. Integrating the PCA and LMGA simulation
models into our neural network approach offers a commendable balance between
accuracy and speed for simulating flat lenses within lens systems. Nevertheless, they
do not completely consider the specific grid arrangement of the metacells. From a
modeling standpoint, this phenomenon results in a slight increase in stray light, which
can be interpreted as a consequence of the metalens’s intrinsic "roughness." We like to
make the point, that this intrinsic roughness plays a similar role in metalens modeling
as modeling the roughness and other defects of lens surfaces. We are working on
solutions for both aspects, as the modeling challenges are closely connected. The
centerpiece of the approach is the analysis of the scattering effect of the metalenses
and rough surfaces. To achieve this, we have devised a Fourier Modal Method (FMM)
in combination with Perfect Matched Layer (PML) that utilizes lateral decomposition
of the incident field alongside distributed computing. In one of our recent releases
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in 2024, VirtualLab Fusion has introduced distributed computing in a highly user-
friendly manner. Combining the results of all clients in the computer network provides
the simulated result of the entire metalens. This allows for a thorough investigation
of the scattering impact of lens regions, with the area size being adjustable based on
the number of clients in the distributed computing network.

We want to stress that, while analyzing the roughness and its impact on lens
system performance is crucial, no lens designer will cease using available software tools
to design lens systems simply because they are unsure how to incorporate roughness
analysis into their designs. This pragmatic approach should also be applied to flat
lenses, including metalenses. With VirtualLab Fusion, we offer an expanding range
of tools and techniques for designing and simulating flat lenses with precision and
efficiency, enabling you to explore their potential in your work.

9 Conclusion

Slide #139

We would like to conclude this article by reiterating that flat lenses are a remark-
able and exciting addition to the optical design toolkit, especially in the areas of
imaging and illumination. Incorporating flat lens technology into lens design work-
flows is essential for comprehending and utilizing their full potential. In this article
we have outlined our approach to addressing this challenging problem. Our approach
to solving this task is facilitated by the remarkable multiscale simulation technology
offered by VirtualLab Fusion. In the forthcoming software updates in 2025, we will
be incorporating the flat lens technologies showcased in this article, allowing you to
use them directly.
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