

Basic structure-based source model for an OLED

Part I: Emitter Mode Selection

Structure-Based Source Modeling in Virtuallab Fusion

- Traditionally, source models in VirtualLab Fusion have been function-based, representing light emission by assuming specific analytical modes, such as a Gaussian beam for a laser or Lambertian modes for an extended source.
- We are now beginning to introduce a more powerful paradigm: structure-based source modeling. This technique derives the emitted light not from analytical assumptions, but from the physical source structure itself.
- This approach calculates the emitted light by, for example, simulating a laser resonator, calculating the eigenmodes of a waveguide, or by placing fundamental emitters like dipoles inside the source structure and simulating the resulting light output.
- In this first use case, we launch this initiative by demonstrating a basic structure-based source model for an OLED.
- This is the first step in building a comprehensive new library of digital twins that will seamlessly integrate into optical system modeling across all scales.

Structure-Based Source Model for an OLED

- An accurate structure-based model for an Organic Light-Emitting Diode (OLED) must fundamentally capture the interaction between the emitters within the emitting layer and the surrounding thin-film layers of the device stack.
- To achieve this, a comprehensive model must account for the following key aspects:
 - 1. **Emitter Mode Selection:** The choice of emitter modes to correctly represent the unpolarized nature of the intrinsic light emission.
 - 2. **Emission Characteristics:** The spatial extent and geometry of the emitting area within the layer.
 - 3. **Spectral Properties:** The effects of chromatic dispersion and the limited temporal coherence of the emitted light.
- This document begins to showcase the structure-based OLED modeling capabilities of VirtualLab Fusion through a series of use cases addressing the aforementioned topics.

The inclusion of complex three-dimensional (3D) pixel geometries, such as sidewalls, is identified as a direction for future research into advanced structure-based OLED digital twins.

Structure-Based Source Model for an OLED: Emitter Mode

- This use case specifically addresses the first requirement: the selection of appropriate emitter modes, following the theoretical framework established in [1].
- Based on this theory, we define an unpolarized Lambertian electromagnetic mode, which is implemented as the function-based *Lambertian Radiation Mode* in VirtualLab Fusion.
- This source is positioned within the emitting layer of the OLED stack.
- The multilayer stack itself can be constructed in two ways:
 - Using two Stratified Media Components to sandwich the emitting layer.
 - Alternatively, assembling the entire structure as a sequence of *Planar Interface Components*. This approach is selected here, as it provides deeper insight into non-sequential modeling and offers greater flexibility for modeling temporal coherence (see the related use case).

[1] Tervo, J., Turunen, J., Vahimaa, P., Wyrowski, F., 2010. Shifted-elementary-mode representation for partially coherent vectorial fields. J. Opt. Soc. Am. A 27, 2004.

Structure-Based Source Model for an OLED: Non-sequential

- Each *Planar Interface Component* features four modeling channels (++, +-, -, -+) that adhere to the standard S-matrix convention. These channels can be individually opened or closed.
- By selectively opening these channels, the influence of the thin-film stack on the final light distribution can be thoroughly investigated.
- Light detection and analysis are performed using both an *Irradiance Detector* and a *Radiant Intensity Detector*.

Channels available for selection to control non-sequential modeling.

Interface	+/+	+/-	-/-	-/+
1			Х	Х
2				
3				
4				
5	Х	Х		

Application Scenario

Application Scenario: Structure-Based Source Model

Application Scenario: Task

Simulation Results

Results Inside Structure without Multiple Internal Reflections

Interface	+/+	+/-	-/-	-/+
1	√	X	X	X
2	√	Х	X	X
3	Х	Х	Х	Х
4	Х	Х	Х	Х
5	X	X	Х	Х

Results Inside Structure with Multiple Internal Reflections

Interface	+/+	+/-	-/-	-/+
1	√	√	X	X
2	√	√	✓	✓
3	√	√	✓	✓
4	√	√	✓	✓
5	X	X	✓	✓

Results Outside Structure without Multiple Internal Reflections

Interface	+/+	+/-	-/-	-/+
1	√	Х	X	X
2	√	X	X	X
3	Х	Х	Х	Х
4	Х	Х	Х	Х
5	Х	Х	Х	Х

Results Outside Structure with Multiple Internal Reflections

Interface	+/+	+/-	-/-	-/+
1	√	✓	X	X
2	√	✓	√	✓
3	√	✓	√	✓
4	√	√	√	√
5	Х	Χ	√	√

Irradiance

Conclusion

- Without internal multi-reflections, the Lambertian mode largely preserves its overall shape.
- Including them introduces strong interference patterns at the detector plane. Thought it has to be mentioned, that this results from the use of a monochromatic source with infinite coherence length. With finite bandwidth, these effects may disappear – a topic addressed in the next use case of this series.

Radiant intensity outside structure without consideration of multi-reflections.

Radiant intensity outside structure with consideration of multi-reflections.

Workflow Steps

Basic Workflow Steps

Source selection

System setup

Detector selection

Getting it done in VirtualLab Fusion:

➤ Load Lambertian Radiation Mode from our source catalog

Optical setup

Source catalog

Basic Workflow Steps

Source selection

System setup

Detector selection

Getting it done in VirtualLab Fusion:

Channel configuration for surfaces and grating regions

Basic Workflow Steps

Source selection

System setup

Detector selection

Getting it done in VirtualLab Fusion:

- Irradiance Detector
- Radiant Intensity Detector

Detector add-on selection

Document Information

Title	Basic Source Model for OLED – Part I: Single Mode
Document code	USC.0452
Publication date	08.08.2025
Required packages	-
Software version	2025.2 (Build 1.118)*
Category	Use Case
Further reading	

^{*} The files attached to this document require the specific version or later.