

Reflection at a Retroreflector with Rough Surfaces

Abstract

Retroreflectors are commonly used when trying to reflect light independent from its incident direction roughly back into the same direction. This use case shows how to model such kind of structure with the help of Non-Sequential Field Tracing. It also includes rough surfaces for the walls of the reflector. These are modeled by applying random functions onto the surfaces.

Application Scenario

Application Scenario: System

Source

- Gaussian wave
- Wavelength: 850 nm
- Waist radius: 100 µm x 100 µm

Detector

• Different incident angle

- 5 mm x 5 mm x 5mm
- Silver surface with different roughness

Application Scenario: Task

Detector

• Irradiance

Configuration a): no roughness

Configuration b): low roughness

Configuration c): high roughness

Simulation Results

Create Roughness by Random Phase Functions

3D View of the System

low roughness

high roughness

Results with Different Surface Roughness

3D View of the system

Propagation Into the Vortex

The incident angle can be adjusted so that the Gaussian beam directly hits the center of the reflector.

result at detector plane with high surface roughness

Workflows

Getting it done in VirtualLab Fusion:

- > <u>Position and orientation of elements in the optical setup</u>
- > <u>Channel configuration</u> for non-sequential field tracing
- Diffractive Optical Element Component

Edit Diffractive Optio	cal Element (DOE) Component	(Surface 1)			
1 dia	Surface	+/+ +/	//-	-/+	
	Surface #1 (Plane Interface)				
Coordinate Systems					

In this case, the channel +/- (forward/backward) are selected to represent the mirror-like behavior of the retroreflector surfaces. Non-sequential field tracing enables modeling of light propagation between the mirrors.

Getting it done in VirtualLab Fusion:

Universal Detector

Title	Reflection at a Retroreflector with Rough Surfaces	
Document code	USC.0451	
Publication date	02.05.2025	
Required packages	-	
Software version	2024.1 (Build 2.74)*	
Category	Use Case	
Further reading	 <u>Reflection at a Rough Surface</u> <u>Diffractive Optical Element Component</u> 	

* The files attached to this document require the specific version or later.