

Optimal Working Distance for Coupling Light into Single-Mode Fibers

Abstract

In this example, we select a commercially available lens and show how to find the optimal working distance to achieve maximum coupling efficiency. Starting from a geometrically found focus position, the optimal distance is evaluated using diffractive propagation methods.

Application Scenario

Application Scenario: System

Application Scenario: System

Application Scenario: Task

Find the optimal working distance *d* to maximize fiber coupling efficiency.

Initial Working Distance by Focal Spot Calculation

Field Evaluation at Ray-Optics' Focal Distance

file: USC.0072_FiberIncouplingDistance_01_At Focal Distance Found by Ray Tracing.os

Optimal Working Distance by Parameter Run

Field Evaluation at Ray-Optics Focal Distance

file: USC.0072_FiberIncouplingDistance_03_At Optimal Distance Found by Field Tracing.os

Workflow Steps

Getting it done in VirtualLab Fusion:

- Zemax import of lens group
- > <u>Position and orientation</u> of elements in the optical setup

Getting it done in VirtualLab Fusion:

- Universal Detector
- Fiber Coupling Efficiency

dit Singlemode Fi	ber Coupling Efficiency Detector (Fiber Coupling Efficiency)	×	Singlemode
12	Detector Window and Resolution Detector Function		Fiber
	 Specify Gaussian Mode Field 		Coupling
Coordinate		0.003	Efficiency
Systems	O Fiber NA	0.002	Lincicity
k.	 Mode Field Diameter (1/e^2) 	3 μm	Detector
Position /	Specify Customized Mode Field		
Orientation	Mode Field	Set Show	
Detector	Efficiency Related to Incident Field of Optical System		
Parameters			

Specific Workflow Steps Related to Use Case

Getting it done in VirtualLab Fusion:

Parameter Run document

Art the parameter run and analyze its results Go! Use Already Calculated Results for Next Run Iteration Step	umei
Go! Use Already Calculated Results for Next Run Iteration Step	umer
Go! Use Already Calculated Results for Next Run	
Use Already Calculated Results for Next Run Iteration Step	
Iteration Step	
tector Subdetector Combined Output 1 2 3 4	
ried Parameters Distance Before ("Fiber End Data Array 1.5 mm 1.505 mm 1.51 mm 1.515 mm 1.52 mm	
ber Coupling Efficiency" Singlemode Fiber Couplin Data Array 14.468 % 14.23 % 15.034 % 15.692 % 14.928 %	

Title	Optimal Working Distance for Coupling Light into Single-Mode Fibers
Document code	USC.0072
Publication date	28.04.2025
Required packages	-
Software version	2024.1 (Build 2.74)*
Category	Use Case
Further reading	 <u>Comparison of Different Lenses for Fiber Coupling</u> <u>Parametric Optimization of Fiber Coupling Lens</u>

* The files attached to this document require the specific version or later.