

Imaging of Sub-Wavelength Gratings by Using Vector Beam Illumination

Abstract

It has been shown that the polarization of light play an important role in the interaction with micro- and nanostructures. For example, different types of vector beams have been employed in microscopy. In this example, a high-NA microscope for imaging of subwavelength grating is build up, and the influences from illumination with linear, radial, and azimuthal polarizations is investigated.

Application Scenario

Scenario: System

Scenario: Task

Simulation Results

3D System View

Imaging with Linearly Polarized Light

Imaging with Radially Polarized Light

Imaging with Azimuthal Polarized Light

Workflows

Basic Workflow Steps

Source selection

System setup

Detector selection

Getting it done in VirtualLab Fusion:

- Plane Wave
- Programmable Source for Radial and Azimuthal Field

Options for linear polarization

Azimuthal polarization

Basic Workflow Steps

Source selection

System setup

Detector selection

Getting it done in VirtualLab Fusion:

- Zemax import of lens group
- Position and orientation of elements in the optical setup
- Use <u>Grating Component</u> to represent sample

Microstructure component

Basic Workflow Steps

Source selection

System setup

Detector selection

Getting it done in VirtualLab Fusion:

Irradiance Detector

Detector add-on selection

Document Information

Title	Imaging of Sub-Wavelength Gratings by Using Vector Beam Illumination
Document code	USC.0012
Publication date	31.07.2025
Required packages	-
Software version	2025.1 (Build 1.176)*
Category	Use Case
Further reading	 Reflecting Microscope System with very high Numerical Aperture Single Molecule Imaging by High-NA Fourier Microscope

^{*} The files attached to this document require the specific version or later.