

### How to Configure Ultrashort Pulse Simulations in VirtualLab Fusion: A Step-by-Step Guide



This tutorial presents a workflow for specifying, modeling, and detecting ultrashort pulses within VirtualLab Fusion. It covers the generation of pulse spectra, their integration into light sources, and explores two distinct strategies for ultrashort pulse modeling.

## **Specification of a Pulse Spectrum**



## **Difference between Spectrum and Pulse Spectrum**



# **Definition of a Pulse Spectrum: Sampling Points**

| Gauss | sian Pulse Spectrum                                           | ×                     |
|-------|---------------------------------------------------------------|-----------------------|
| Pu    | Ise Specification                                             |                       |
|       | Definition by FWHM O Definition                               | ition by 1/e Diameter |
|       | Pulse Duration                                                | 10 fs                 |
|       | Carrier Wavelength                                            | 800 nm                |
|       | Carrier Frequency                                             | 374.7405725 THz       |
|       | Estimated Increase of Time Window                             | 5                     |
| Nu    | umerical Settings                                             |                       |
|       | Squared Amplitude Truncation (Frequency Domain)               | 0.01 %                |
|       | Resulting Size of Angular Frequency Window                    | 1.010672763 PHz       |
|       | Squared Amplitude Truncation (Time Domain)                    | 0.01 %                |
|       | Resulting Size of Time Window                                 | 182.2615729 fs        |
|       | Resulting Samples                                             | 29                    |
|       | ОК                                                            | Help                  |
| ક     | The number of resulting<br>sampling points can be se<br>here. | g<br>en               |

The Gaussian Pulse Spectrum automatically generates the spectrum (in wavelength) of a pulse with a Gaussian-shaped temporal envelope based on its Pulse Duration and Carrier Wavelength. Additional numerical parameters, such as the Estimated Increase of Time *Window*, influence the spectral sampling rate, which is linked to the time-domain window size via the Fourier transform.



Estimated Increase of Time Window: 5 Estimated Increase of Time Window: 15

## **Definition of a Pulse Spectrum: Window Sizes**

| Gauss | sian Pulse Spectrum                                           |                 | ×          |  |  |  |
|-------|---------------------------------------------------------------|-----------------|------------|--|--|--|
| Pu    | Ise Specification                                             |                 |            |  |  |  |
|       | Definition by FWHM O Definit                                  | ion by 1/       | e Diameter |  |  |  |
|       | Pulse Duration                                                |                 | 10 fs      |  |  |  |
|       | Carrier Wavelength                                            |                 | 800 nm     |  |  |  |
|       | Carrier Frequency                                             | 374.74          | 05725 THz  |  |  |  |
|       | Estimated Increase of Time Window                             | _               | 5          |  |  |  |
| -Nu   | Imerical Settings                                             |                 |            |  |  |  |
|       | Squared Amplitude Truncation (Frequency Domain)               |                 | 0.01 %     |  |  |  |
|       | Resulting Size of Angular Frequency Window                    | 1.010672763 PHz |            |  |  |  |
|       | Squared Amplitude Truncation (Time Domain)                    |                 | 0.01 %     |  |  |  |
|       | Resulting Size of Time Window                                 | 182.2           | 2615729 fs |  |  |  |
|       | Resulting Samples                                             | 1               | 29         |  |  |  |
|       | ОК Неір                                                       |                 |            |  |  |  |
| S     | The number of resulting<br>sampling points can be se<br>here. | en              |            |  |  |  |

By definition, a Gaussian extends into infinity. As this cannot be represented in the software, the function needs to be truncated. This determines the window sizes in spectral and time domain and hence also influences the sampling rate.



**Squared Amplitude Truncation** (Frequency Domain): 0.01%



Squared Amplitude Truncation (Frequency Domain): 0.00001%

### **Include Pulse into Source**







In VirtualLab Fusion, pulse systems can be simulated in two ways:

• Strategy 1:

**Full Set of Spectral and Lateral Modes** A pre-configured mode where all wavelengths are simulated simultaneously. It offers an easy setup but less flexibility.

 Strategy 2: Single Mode Selection

Used with a Parameter Run document to simulate wavelengths sequentially. Users can dynamically adjust the number of wavelengths, and this strategy supports distributed computing (DC).

|                      | ers                         | Spectral Parame                             | eters      |
|----------------------|-----------------------------|---------------------------------------------|------------|
| patial Parameters    | Polarization                | Mode Selection                              | Sampling   |
| election of Active M | odes                        |                                             |            |
| election Strategy    | Full Set o                  | of Spectral and Later                       | al Mode 🖂  |
| lumber of Spectral N | lodes (ma Spectral S        | f Spectral and Later<br>Selection Ordered b | al Modes 🚽 |
| lumber of Lateral Mo | odes (max Spectral Single M | Selection Uniform in ode Selection          | Index      |
| lumber of Active Mo  | des                         |                                             |            |
| lumber of Lateral Mo | odes                        |                                             | 1          |
|                      |                             |                                             | 20         |
| lumber of Spectral N | lodes                       |                                             | 29         |

## **Note: Time Shift & Residuals**

All time-domain pulse detector add-ons require Optical Path Length (OPL) information.

- **Strategy 1:** The detector add-ons automatically calculate the OPL no further action is needed.
- Strategy 2: Users must manually compute the OPL. The Optical Path Length Analyzer simplifies this process. Enable Evaluate Phase by Optical Path Length and Residuals of Fit to calculate the necessary information (see next page).



| Edit Optical Path Length Analyzer     | ×                 |
|---------------------------------------|-------------------|
| Select Part of Optical Setup to Analy | ze                |
| From Light Source "Source" (# 0       | 1                 |
| To Detector "Detector" (#             | 603) 🗸            |
| Select Output                         |                   |
| Evaluate Optical Path Length          |                   |
| Evaluate Phase by Optical Path I      | Length            |
| Fit I: Time Shift without Dispersion  | on                |
| Linear Fit Res                        | iduals of Fit     |
| Fit II: Time Shift by Regression      |                   |
| Linear Fit Res                        | iduals of Fit     |
| Fit III: Time Shift with Dispersion   |                   |
| 🗌 Linear Fit 🛛 🖉 Res                  | iduals of Fit     |
| Frequency Sampling                    |                   |
| • Automatic Sampling                  | ) Manual Sampling |
| Oversampling Factor (Frequencies)     | 1                 |
| Ok                                    | Cancel Help       |

## **Time Shift & Residuals**

| R | * 57: Opti    | cal Setup Editor #57 (Pu | lse Propagat | ion)                   |         |                      |                   |
|---|---------------|--------------------------|--------------|------------------------|---------|----------------------|-------------------|
|   | D<            | Path                     | Detectors    | 🔫 🗕 Analyzers          | 2       | Logging              |                   |
|   | Start Element |                          |              |                        |         | Target Element       | Linkage           |
|   | Index         | Element Name             | Ref. Type    | Medium                 | Index   | Element Name         | Propagation N     |
|   | 0             | Source                   | -            | Vacuum in Homogeneous  | 3       | Component            | Automatic Propaga |
|   | 3 Component   |                          | т            | Air in Homogeneous Med |         |                      |                   |
|   |               |                          |              |                        |         |                      |                   |
|   |               |                          |              |                        |         |                      |                   |
|   |               |                          |              |                        |         |                      |                   |
|   |               |                          |              |                        |         |                      |                   |
| Î | ] Tools       | <b>₩</b> .               |              | Simulation Engine 802: | Optical | Path Length Analyzer | ✓ Go!             |

The OPL Analyzer outputs the required time shift information in the Detector Results panel. You can change the Simulation Engine to Optical Path Length Analyzer in the Optical Setup Editor.

Note: For this analyzer to function, the source needs to be set to **Full Set of Spectral and Lateral Modes** back again.





#### residuals

# **Strategy 1 – Simulate All Modes Together**



When using *Full Set of Spectral and Lateral Modes* in the source, the *Universal Detector* can be set up with detector add-ons like in any other system. Afterwards, simply press the  $\sum_{Get}$  - button and the rest is handled automatically.

While in theory all detector add-ons can be used, we also have an entire category for detector add-ons specialized on analyzing pulses. You can find them by clicking of the *Load* button. More information under: <u>Universal Detector</u>

We introduce new detector add-ons even between releases, so always press *Synchronize From Web* ( ) to stay up to date!



The *Single Mode Selection* can be combined with a *Parameter Run* to simulate each wavelengths individually. Select *Mode Index (Spectral)* as variable parameter.

If a simulation requires a high but unknown number of wavelengths (e.g. for accurate modeling of angular dispersion from a structure), the source can be defined with an excess of wavelengths and then be refined by simulating only a subset (e.g., every eighth, fourth, or second wavelength) until convergence is achieved using the *Step Size* column. Since the *Parameter Run* saves results, already simulated wavelengths will not be calculated twice.

This technique also supports **Distributed Computing** for enhanced performance. See: <u>Usage of Distributed Computing</u>

| meter Specification                                                                                                               |                   |                           |                  |               |                       |                        |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------------|---------------|-----------------------|------------------------|
| up the parameter(s) to be varied.                                                                                                 |                   |                           |                  |               |                       |                        |
| can select one or more parameters which shall b<br>cifying how the parameters are varied per iteration<br>ge Mode Standard        | e varied a<br>on. | s well as the resu        | Ilting number o  | of iterations | . Several <u>mode</u> | <u>s</u> are available |
| tter by                                                                                                                           |                   |                           |                  | ×             | Show Or               | nly Varied Paramet     |
| 2 * Parameter                                                                                                                     | Vary              | From                      | То               | Steps         | Step Size             | Original Value         |
| System Temperature                                                                                                                |                   | -273.15 °C                | 1e+100 °C        | 1             | 1e+100 °C             | 20 °C                  |
| Air Pressure                                                                                                                      |                   | 0 Pa                      | 1 GPa            | 1             | 1 GPa                 | 101.325 kPa            |
| Medium at "-" Output (Vacuum in Homogene<br>Material (Vacuum)   Constant Absorption<br>Material (Vacuum)   Constant Refractive In | ous Medi          | <b>um)</b><br>0<br>1e-300 | 1e+300<br>1e+300 | 1             | 1e+300<br>1e+300      | 0                      |
| ⇒ (empty)                                                                                                                         |                   |                           |                  |               |                       |                        |
| Polarization Angle                                                                                                                |                   | 0°                        | 360°             | 1             | 360°                  | 0°                     |
| Mode Index (Spectral)                                                                                                             |                   | 1                         | 24               | 24            | 1                     | 15                     |
| Distance to Input Plane                                                                                                           |                   | -1e+297 km                | 1e+297 km        | 1             | 2e+297 km             | 0 mm                   |
| Lateral Offset X                                                                                                                  |                   | -1e+297 km                | 1e+297 km        | 1             | 2e+297 km             | 0 mm                   |
| Lateral Offset Y                                                                                                                  |                   | -1e+297 km                | 1e+297 km        | 1             | 2e+297 km             | 0 mm                   |
| Oversampling Factor                                                                                                               |                   | 1e-300                    | 1e+300           | 1             | 1e+300                | 1                      |
| Field Size Factor                                                                                                                 |                   | 1e-300                    | 1e+300           | 1             | 1e+300                | 1                      |
| Relative Edge Width                                                                                                               |                   | 0 %                       | 1e+302 %         | 1             | 1e+302 %              | 10 %                   |
|                                                                                                                                   |                   |                           |                  |               |                       |                        |

# **Strategy 2 – Wavefront Phase**

| 12: SSTF Setup                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Specification of Detecting Devices<br>This page allows you to select one or more detecting devices (detectors, analyzers, and the 3D system view). At least one detecting device<br>selected. | Edit Universal Detect          | tor ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Profile: Ray Results Detectors System: 3D                                                                                                                                                     |                                | Field Quantities     Detector Window (x-Domain)       Detector Window (k-Domain)     Gridless Data     Add-ons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Profile: General     Ottectors     Modeling Analyzer                                                                                                                                          | Coordinate<br>Systems          | Data from Universal Detector     For strategy 2 detector a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Detector     Edit Dialog       "Universal Detector" (# 614)     Open                                                                                                                          | Position /<br>Orientation      | Image: Construction of the process of the proces of the process of the proces of the process of |  |  |
| Analyzer     Edit Dialog       "Optical Path Length Analyzer" (# 801)     Open                                                                                                                | d D                            | Edit Electromagnetic Field Quantity Visualization Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Classic Field Tracing Validity:                                                                                                                                                               | $\mathcal{F} \mathcal{F}^{-1}$ | Components Ex Ey Ez Hx Hy Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| < back Next > S                                                                                                                                                                               | Free Space<br>Propagation      | Domain Space (x-Domain) Fourier (k-Domain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Strategy 2 requires the <i>Parameter Run</i> to provide the                                                                                                                                   |                                | Amplitude & Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| field and the wavefront phase. Please ensure that only                                                                                                                                        |                                | Amplitude     Amplitude/Phase (w/o Wavefront Phase)       Wavefront Phase     Wavefront Phase w/o Spherical Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <i>Quantities</i> add-on is active and that said add-on provides the <i>Wavefront Phase</i> .                                                                                                 |                                | Polarization Ellipses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

# **Strategy 2 – Extract Data from Parameter Run**

Change combined output to 2D Data Array/Set of Data Arrays (or 1D Data Array /Set of Data Arrays in case the detector is set up to detect 1D fields) and double-click the column you like to extract the field and wavefront phase.



### **Strategy 2 – Apply Detector Add-on in Main Window**



Detector add-ons are available under *Detectors/Apply Detector Add-on*. Add-ons specialized for ultrashort pulses can be found in the *Pulse Evaluation* section.

Here e.g., the *Pulse Evaluation* (*Point*) add-on is shown. While the parameters obviously depend on the add-on, they always have a section where the *Wave Front Data* can be included.

# **Strategy 2 – Include Time Shift & Residuals**

A new window will pop up to include OPL information. Here, the already calculated time shift and residuals can be included.



## **Document Information**

| title             | How to Configure Ultrashort Pulse Simulations in VirtualLab Fusion:<br>A Step-by-Step Guide                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| document code     | TUT.0438                                                                                                                          |
| document version  | 1.0                                                                                                                               |
| required packages | -                                                                                                                                 |
| software version  | 2024.1 (Build 2.74)                                                                                                               |
| category          | Tutorial                                                                                                                          |
| further reading   | <ul> <li>Grating Stretcher for Ultrashort Pulses</li> <li>Pulse Focusing with High-NA Lens</li> <li>Universal Detector</li> </ul> |