

Visualize Time Dependency of a Propagating Field

Abstract

While complex fields and amplitudes are commonly used to represent electromagnetic fields, the actual field propagates along time. This tutorial explores methods for visualizing real-time field propagation in VirtualLab Fusion, demonstrating the concept through two distinct examples.

Temporal Sampling of Real Part

2D Harmonic Fields with a single subset can have a time dependency added by the Temporal Sampling of Real Part functionality under Manipulations/Miscellaneous. This function will multiply $e^{i\omega_0t}$ onto the data array, with ω_0 calculated from the temporal period via $T=2\pi/\omega_0$ and then extract the real part at $t=\frac{1}{n}T,\frac{2}{n}T,...,T$ with n being the parameter defined by Sampling Count of T.

If the *Treat the Data as Electric Field* flag is active it additionally multiply the extracted real part by 2.

Create Animation

Example 1 – Propagation of an Inclined Plane Wave over a Distance of 10 mm

Modeling Scenario

Set up Optical System

Perform a Parameter Run

Temporal Sampling & Movie Generation

Example 2 – Field Inside Photonic Lattices

Modeling Scenario

source

- ideal plane wave
- wavelength: varies between 400nm and 2000 nm
- linearly polarized (TE or TM

photonic lattices

- 1D lamellar grating
- invariant in y-direction
- refractive index of cylinders: 3.5
- 3 configurations with different period Λ: 500nm, 700nm and 1100 nm

Reference: Yeong Hwan Ko, Nasrin Razmjooei, Hafez Hemmati, and Robert Magnusson, "Perfectly-reflecting guided-mode-resonant photonic lattices possessing Mie modal memory," Opt. Express 29, 26971-26982 (2021)

Scenario

Field Inside Analyzer: FMM

The sample files for this task can be found in the following use case: Resonant Photonic Lattices

For our demonstration we want to setup the *Field Inside Component Analyzer: FMM* in a way that it only detects one component and that efficient sampling is ensured. Then we simulate the system using the analyzer as *Simulation Engine*.

Temporal Sampling & Movie Generation

result of the Field Inside Analyzer: FMM

Follow the workflow demonstrated on page 3 and 4 to create a movie of the time dependant propagation of the field through the focal area.

generated movie

Document Information

title	Visualize Time Dependency of a Propagating Field
document code	TUT.0437
document version	1.0
required packages	-
software version	2024.1 (Build 2.74)
category	Tutorial
further reading	Overview ImageResonant Photonic Lattices

www.LightTrans.com

Marketing Picture

