

Wave Aberration Detectors

Abstract

	Sub - Detector	Result
10	Maximum Radius	9.778214 mm
9	Piston [λ]	130746.66
8	Magnitude of Distortion [λ]	-27.544493
7	Angle of Distortion [λ]	202.50177°
6	Field Curvature [λ]	-158.71186
5	Magnitude of Astigmatism [λ]	120.43849
4	Angle of Astigmatism [λ]	-63.585916°
3	Magnitude of Coma [λ]	142.59892
	Con	26.409933°
	baalage black per	-30.515483

In lens design, the aberration information in the lens system is important for the optimization process. In VirtualLab Fusion, detectors for different kinds of wave aberration representation are provided. User can choose to fit the wave aberration as general polynomial, also as Zernike and Seidel polynomial. VirtualLab Fusion allows the calculation of these polynomials by ray tracing and field tracing simulation.

Modeling Task

 how to detect the aberration information with different kind of polynomial fitting (general polynomial, Zernike and Seidel polynomial)

System Configuration

- To illustrate the usage of the wave aberration detectors, an doublet pair lens system is used as an example.
- In the simulation, the source is an off-axis plane wave which propagates with 10° to the xaxis and 5° to y-axis.
- We detect the aberration information right behind the second doublet.
- The 3D ray tracing figures are shown here for visualization.

Detector: Polynomial Aberrations Fit

Detector: Polynomial Aberrations Fit

• A *Polynomial Aberrations Fit* detector is set right behind the doublet lens component.

Detector Configuration

- The detector performs a least squares polynomial fit to the wavefront of the incident ray or field information with selectable degree of the polynomial (between 1 and 12, inclusively), and defines the aberration by subtracting a reference wavefront phase.
- The polynomial is a 2D function with respect to the coordinate of the detector plane,

$$P(x,y) = \sum_{m=0}^{M} \sum_{n=0}^{N} x^{m} y^{n}.$$

• The polynomila degree is define as M + N.

Detector Configuration

- The *Reference Wavefront* can be set as *Constant Phase* or *Spherical Phase* by the user.
- The constant phase is defined as the average wavefront phase of the incident field at the detector plane.
- The spherical phase is defined either by the user or by optimal fitting. If the fitted absolute value of the phase radius is larger than 100 meters, a constant phase is used internally.*

* Please refer to the Feature UseCase " Wavefront Error Detector" for more detail.

Detector Configuration

- A maximum number of the data points can be set by the user. For avoiding time consuming, by default only 1000 random data points with non-zero amplitude are extracted for the fitting.
- The fitted polynomial can be displayed in a data array if *Aberration Fitted by Polynomial* is checked.
- The fitting error can also be output in a data array by checking the option *Difference of Aberrations to Polynomial Fit*.

Detector Results

- The result can be obtained either by performing ray tracing or field tracing 2nd generation.
- In the simulation here, the Reference Wavefront is chosen as Spherical Phase with optimal fit by VirtualLab Fustion. The results are shown below.

dot diagram (image plane)

aberrations

(detector plane)

fitting error

10

Detector Results

• All the coefficients of the polynomial as well as the radius and the origin of the reference spherical phase are logged in the detector results window.

Detector Results 4				
	Date/Time	Detector	Sub - Detector	Result
31		-	Fitted Phase Radius	-41.346786 mm
30			Fitted Origin X	8.8496203 mm
29			Fitted Origin Y	4.3971935 mm
28			(x^0; y^0) [\]	130745.23
27			(x^1; y^0) [λ]	0
26		-	(x^0; y^1) [\]	0
25			(x ² ; y ⁰) [λ]	-1411570.9
24			(x^1; y^1) [\]	-999032.52
23			(x^0; y^2) [λ]	-653971.64
22			(x^3; y^0) [\]	1.4009897E+08
21			(x^2; y^1) [\]	68990519
20			(x [^] 1; y [^] 2) [λ]	1.402425E+08
19			(x^0; y^3) [λ]	69785685
18			(x^4; y^0) [λ]	-3.9939177E+09
17	0010010017	Polynomial Aberrations Fit #610 after Doublet	(x^3; y^1) [λ]	-4.048304E+08
16	09/09/2017 16:27:52	Pair #11 (T)	(x ² ; y ²) [λ]	-7.697014E+09
15		(Aberrations Fit) (Field Tracing 2nd Generation)	(x [^] 1; y [^] 3) [λ]	-3.7800592E+08
14			(x^0; y^4) [λ]	-3.695554E+09
13			(x ⁵ ; y ⁰) [λ]	4.3821549E+10
12			(x^4; y^1) [λ]	2.6323073E+10
11			(x [^] 3; y [^] 2) [λ]	8.6333063E+10
10			(x^2; y^3) [λ]	4.6421479E+10
9			(x [^] 1; y [^] 4) [λ]	4.2638189E+10
8			(x^0; y^5) [λ]	1.995787E+10
7			(x^6; y^0) [λ]	-7.9806652E+11
6			(x^5; y^1) [λ]	-3.1518382E+11
5			(x^4; y^2) [\]	-2.1420068E+12
4			(x^3; y^3) [λ]	-6.504889E+11
3			(x^2; y^4) [λ]	-1.8951113E+12
2			(x^1; y^5) [λ]	-3.3539863E+11
1			(x^0; y^6) [\]	-5.5140743E+11
Messa	pes Detector Re	sults		

Detector: Zernike & Seidel Aberrations

Detector: Zernike & Seidel Aberrations

 To calculate the aberration as Zernike or Seidel polynomial, a Zernike & Seidel Aberrations detector is set right behind the Optical Interface Sequence component.

Detector: Zernike & Seidel Aberrations

- The detector contains three kinds of aberration representations: Zernike fringe, Zernike standard, and Seidel aberrations.
- Zernike polynomials are defined in standard form: $Z_n^m(\rho, \theta) = N_n^m R_n^m(\rho) \Theta_m(\theta)$ with the nomalization constant N_n^m , the radial polynomial $R_n^m(\rho)$ and an azimuthal component $\Theta_m(\theta)$. *m* is the azimuthal order and *n* is the radial order.

dit Zernike & Seide	el Aberrations	\times
13	Detector Window and Resolution Detector Function	
Geometry /	Evaluate as Seidel Aberrations Zemike Fringe Aberrations Zemike Chaded Aberrations	
Channels	Reference Wavefront	
Position /	O Constant Phase	
Orientation	Fit Method Optimized Radius and Origin ✓	
Tarameters	Fitting	
	Maximum Number of Data Points Used for Fitting 1000	
	O Set Maximum Radial Extent	
	Additional Output	
	Aberrations Fitted by Seidel Polynomial	
	Uniference of Aberrations to Seidel Fit Phase Radius & Origin	
	Assume Geometric Field Zone for Detector Evaluation	
	QK <u>Cancel</u>	lelp

Zernike Fringe Aberrations

- Zernike fringe aberrations are a commonly used subset of 37 Zernike polynomials, with a different indexing from the Zernike standard one.
- For Zernike fringe aberrations the normalization constant N^m_n always equals 1.

Edit Zernike & Seid	lel Aberrations	×
12	Detector Window and Resolution Detector Function	
Geometry /	Evaluate as Zemike Fringe Aberrations	
Position / Orientation	Reference Wavefront O Constant Phase Fit Method Optimized Radius and Origin	
Parameters	Fitting Maximum Number of Data Points Used for Fitting Image: Calculate Maximum Radial Extent Set Maximum Radial Extent	
	Additional Output Aberrations Fitted by Zernike Fringe Polynomial Difference of Aberrations to Zernike Fringe Fit Phase Radius & Origin	
	Assume Geometric Field Zone for Detector Evaluation	Help

Ouput Configuration

- The maximum radial extent for the polynomial can be set manually, or by default calculated as the smallest centered circle containing all data points with non-zero amplitude.
- By making a check, additional output such as *Aberration Fitting by Zernike Fringe Polynomial*, and *Difference of Aberration to Zernike Fringe Fit* could be displayed as DataArray.
- Phase Radius & Origin also be shown if optimal radius and oringin is chosen for spherical phase reference wavefront.

Edit Zernike & Seide	el Aberrations	×
	Detector Window and Resolution Detector Function	
Geometry / Channels	Evaluate as Zemike Fringe Aberrations ~	
Position / Orientation	Reference Wavefront O Constant Phase Image: Spherical Phase Fit Method Optimized Radius and Origin	
	Fitting 1000 \$	
	Additional Output Aberrations Fitted by Zernike Fringe Polynomial Difference of Aberrations to Zernike Fringe Fit Phase Radius & Origin	
	Assume Geometric Field Zone for Detector Evaluation OK Cancel	Help

Detector Result

 After doing ray tracing, the dot diagram at the image plane, the fitted Zernike aberrations, and the fitting error are shown below.

dot diagram (image plane)

aberrations (detector plane)

fitting error

Detector Result

All the 37 coefficients of the Zernike fringe polynomial are logged in the detector results, with the name of different kind of aberrations. The coefficients are in the unit of input wavelength (λ).

Detector Results				
	Date/Time	Detector	Sub - Detector	Result
38			Maximum Radius	9.778214 mm
37			Piston [λ]	130684.4
36			Tilt X [λ]	117.117
35			Tilt Y [λ]	56.059367
34			Defocus [λ]	-69.019253
33			Astigmatism X [λ]	-38.614877
32			Astigmatism Υ [λ]	-50.912077
31			Coma X [λ]	47.464477
30			Coma Y [λ]	23.567491
29			Spherical [λ]	-6.8973466
28			Trefoil X [λ]	0.14734645
27			Trefoil Υ [λ]	0.76040507
26			Secondary Astigmatism X [\]	-0.99252412
25			Secondary Astigmatism Y []	-1.305145
24			Secondary Coma X [λ]	1.0668305
23			Secondary Coma Y [\]	0.52915274
22			Secondary Spherical []	-0.19508189
21		Zernike & Seidel	Tetrafoil X [λ]	0.050389718
20	09/12/2017	Aberrations #611 after Ontical Interface Sequence	Tetrafoil Y [\]	-0.18071858
19	17:55:53	#11 (T)	Secondary Trefoil X [\]	0.044070209
18		[Aberrations Fit] (Ray Tracing)	Secondary Trefoil Y [\]	0.23055435
17			Tertiary Astigmatism X []	-0.10668932
16			Tertiary Astigmatism Y []	-0.14047122
15			Tertiary Coma X [\]	0.066913947
14			Tertiary Coma Y [A]	0.033202563
13			Tertiary Spherical [\]	-0.008338117
12			Pentafoil X I\1	-0.004515323
11			Pentafoil Y [\]	0.0050310042
10			Secondary Tetrafoil X [\]	0.0029121215
9			Secondary Tetrafoil Y [λ]	-0.010471116
8			Tertiary Trefoil X D1	0.0019318578
7			Tertiary Trefoil Y [λ]	0.01090064
6			Quaternary Astigmatism X [\]	-0.0034157892
5			Quaternary Astigmatism Y [A]	-0.0044961865
3			Quaternary Assignation 1 [A]	0.0014962155
3			Quaternary Coma X [N]	0.0014502155
2			Quaternary Coma T [A]	0
2		Quaternary Spherical [A]	0	
-			Quinary Spherical [A]	U

Zernike Standard Aberrations

 For the Zernike standard aberrations, the polynomial degree can be set by the user, whereas the number should be between 0 to 20.

Detector Result

The polynomial degree is set as 7. After ray tracing or field tracing, the coefficients of the Zernike standard polynomial are shown, with different indexing from the fringe ones.

Data film Data data Sala Data data Data data Data data data dat				
27	Date/Ime	Detector	Sub - Detector	0.770214
37		_	Maximum Radius	9.778214 mm
36		-	Piston [A]	130684.86
35		-	Tilt Y [λ]	27.733123
34			Tilt X [λ]	57.960782
33			Astigmatism Υ [λ]	-20.463625
32		_	Defocus [λ]	-39.377047
31		_	Astigmatism X [λ]	-15.520492
30		_	Trefoil Y [λ]	0.1232597
29			Coma Y [λ]	8.1444932
28			Coma X [λ]	16.402567
27			Trefoil X [λ]	0.024230703
26			Tetrafoil Υ [λ]	-0.027513958
25			Secondary Astigmatism Y [\]	-0.28102449
24			Spherical [λ]	-2.8797612
23			Secondary Astigmatism X [\lambda]	-0.21381466
22			Tetrafoil X [λ]	0.0076871793
21		Zeelle 0 Ceidel	Pentafoil Υ [λ]	0
20		Aberrations #611 after	Secondary Trefoil Y [λ]	0.031074619
19	09/12/2017	Optical Interface Sequence	Secondary Coma Y [\]	0.098053152
18	17.56.04	[Aberrations Fit] (Ray	Secondary Coma X [\]	0.19771885
17		Tracing)	Secondary Trefoil X [λ]	0.0059308581
16		-	Pentafoil X [λ]	0
15		-	Hexafoil Y [A]	0
14		_	Secondary Tetrafoil Y [\]	0
13			Tertiary Astignatism Y [\]	-0.014724092
12			Secondary Soberical Di	-0.033252669
11			Tertiany Astigmatism Y D1	-0.03232003
10			Secondary Tatrafoil X (1)	-0.01173012
			Herrafeit X D1	0
3			Hexatoli X [A]	0
8				0
/			Secondary Pentatoli Y [A]	0
6			I ertiary Tretoll Y [A]	0
5			Tertiary Coma Y [λ]	0.0019003203
4			Tertiary Coma X [λ]	0.0038285168
3			Tertiary Trefoil X [λ]	0
2			Secondary Pentafoil X [λ]	0
1		Heptafoil X [\]	0	

Seidel Aberrations

- The five primary monochromatic aberration is known as the Seidel aberrations.
- The Seidel polynomial formula is: $S(\rho, \theta) = M_P + M_D \cdot \rho \cos(\theta - \theta_D) + M_F \cdot \rho^2 + M_A \cdot \rho^2 \cos^2(\theta - \theta_A) + M_C \cdot \cos(\theta - \theta_C) + M_S \cdot \rho^4$
- The M₂ and θ₂ give the magnitude and the orientation angle of the corresponding Seidel aberrations.

Edit Zernike & Seid	del Aberrations	×
M -	Detector Window and Resolution Detector Function	
Geometry / Channels	Evaluate as Seidel Aberrations ~	
Position / Orientation	Reference Wavefront O Constant Phase Fit Method Optimized Radius and Origin	
	Fitting Maximum Number of Data Points Used for Fitting 1000 ♀	
	Aberrations Fitted by Seidel Polynomial Difference of Aberrations to Seidel Fit Phase Radius & Origin Assume Geometric Field Zone for Detector Evaluation	
	OK Cancel Help	p

Detector Result

18:14:30

Detector Results

5

4

3

2

1

Messages

#11 (T)

[Aberrations Fit] (Ray Tracing)

Magnitude of Astigmatism [λ]

Angle of Astigmatism [\]

Magnitude of Coma [λ]

Angle of Coma [λ]

Spherical Aberration [\]

120.43849

-63.585916°

142.59892

26.409933°

-30.515483

Document Information

title	Wave Aberration Detectors
version	1.0
VL version used for simulations	7.0.3.4
category	Feature Use Case