

Unpolarized Light for Grating Simulation – Discussion at Examples

Abstract

Optical devices like gratings are sensitive to the polarization of the light. Thus, it is important to properly consider the polarization of light in the simulation. In practice, gratings sometimes work with unpolarized light as input. We show how to model such unpolarized light, as the average of two orthogonal polarization states, for grating simulation in VirtualLab Fusion. Examples are provided to illustrate the corresponding settings in the software.

- Grating analysis
 - For single grating analysis with the Fourier modal method (FMM / RCWA), plane wave incidence is used to calculate e.g. the diffraction efficiencies as the intrinsic properties of the grating under investigation.

Unpolarized Light in Grating Simulation

- Unpolarized plane wave
 - Considering a plane wave along the z direction, unpolarized light can be thought of as that which, statistically, may take any polarization state at one time.
 - An arbitrary polarization state can be projected on two orthogonal states; unpolarized light gives, statistically, equal projections along the two states forming this orthogonal basis.
 - Thus, we can use the average of the two orthogonal states, in an incoherent manner, to represent unpolarized light.

Light Source Settings in Grating Simulation

- Manual control of source polarization states
 - Light is always represented in vectorial form in VirtualLab Fusion and the user has full control over the polarization state in the source settings.
 - Following the basic concept, one can perform grating simulations with specific input polarization states as needed for unpolarized light. For example, by choosing TE and TM polarizations as the two orthogonal basis states, we can perform the grating simulation independently for both configurations, and then manually average the results via ribbon-menu functions (as explained in what follows).

	Edit Ideal Plane Wave			×
	Wavelength 1.0	16 µm	Weight	1
	Polarization Refers to Coordi	nate System of Light	Source	\sim
	Polarization Input			
	Type of Polarization Linear	ly Polarized	~	
cont pola	rol of source 7 Circula rization state	y Polarized rły Polarized ally Polarized al Input via Jones Ve	ector	
위 , 않 🗆 📾 =	Normalized Jones Vector			
	5 ··· · · · · · · · · · · · · · · · · ·		Harmo	Dinic Held
ile Start Sources	Functions Catalogs W	ndows View	Manipulations	Propagations
Co III	A A	φ		11.7
ray - Array Operations F erations v with Constant v C	eld Quantity Amplitude / Real perations * Part Manipulations * 1	Phase Manipulations - Disp	Lateral Arr placement • Manip	ay Size San Julations * Manipu
Addition		General		
Subtraction Multiplication	selected ribbon-me functions for post	nu -		
Convolution	analysis of the resu	lts		
insen Anay				

Polarization-Dependent Analyzer in Grating Simulation

- Polarization analyzer for gratings
 - For grating diffraction efficiency calculation, VirtualLab Fusion provides the Polarization Analyzer, for the investigation of polarization-dependent effects.
 - The polarization analyzer, in comparison to the grating order analyzer, has additional control over the polarization states of the incidence.
 - The polarization settings in the polarization analyzer work independently from the source settings in the optical setup.

Example #1: Talbot Images with Unpolarized UV Light

Modeling Task

Detected Fields at a Certain Position

unpolarized plane wave modeled as combination of

- x-polarized (TM)
- y-polarized (TE)

Edit Ideal Plane Wave			×
Wavelength	365 nm	Weight	1
Polarization Refers to	TE-TM Coordinate	e System	~
Polarization Input			
Type of Polarization	Linearly Polarized	~	Edit Id
Angle		þ°	Wave
			Polar
			Polari
Normalized Jones Vector			Ту
(JTm) = (1 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m when when when when when when when when		-Norm
			1

We set the incident plane wave in the TE-TM coordinate system, with linear polarization angles 0° and 90°, here for normal incidence, exactly along x- and y-direction.

Edit Ideal Plane Wave		
Wavelength	365 nm	Weight
Polarization Refers to	TE-TM Coordinate Sy	stem
Polarization Input		
Type of Polarization	Linearly Polarized	~
Angle	4	90°
Normalized Jones Vector		
( JTm \ (		0 \
( ) = (		1)
(0.07) (		.)

### **Detected Fields at a Certain Position**

## unpolarized plane wave modeled as combination of

- x-polarized (TM)
- y-polarized (TE)



### transmitted field components from x-polarized input



### transmitted field components from y-polarized input



### **Incoherent Summation**

- The incoherent summation of the results from two linearly polarized input beams can be done via ribbon-menu functions.
- To perform the incoherent summation, one should convert the intensity data into a Numerical Data Array document.



### **Incoherent Summation**

- The incoherent summation of the results from two linearly polarized input beams can be done via ribbon-menu functions.
- To perform the incoherent summation, one should convert the intensity data into a Numerical Data Array document.



### **Incoherent Summation**



### **Choices of Orthogonal Polarization States**

The choice of the two orthogonal input polarization states is arbitrary.



#### input as combination of:

- linear polarized 0°
- linear polarized 90°



#### input as combination of:

- linear polarized 30°

5 9: Summed Intensity

[mu] Y

Diagram Table Value at (x,y)

-0.5

- linear polarized 120°

Numerical Data Array

Sum of subsets [V/m]

#### input as combination of:

- linear polarized 70°
- linear polarized 160°



The resulting Talbot images are independent of the choice of the two orthogonal input polarization states.

0

X [um]

0.5

### **Example #2: Analysis of Polarization Independent Transmission Gratings**

### **Modeling Task**



fill factor f

66.8%

### **Polarization Analyzer for Gratings**



lit Polarization Analyzer			
Analyzed Output Transmission	◯ Reflection		
Analyzed Orders Selection Strategy	Order Range V		
Minimum Order Maximum Order	X Y -1 ÷ 0 ÷		
Output Efficiency Ex-Dir Efficiency Ey-Dir Vary Wavelength a	rection Polarization Contrast rection Average Efficiency and/or Incident Angles		

The polarization analyzer does the job of averaging the diffraction efficiencies for selected orders, with  $E_x$ and  $E_y$  polarizations as the input.

	Detector Results				
diaplay of the		Date/Time	Detector	Sub - Detector	Result
display of the	3	08/18/2020 10:31:06	"Polarization Analyzer" #801	Efficiency Ex-Direction	98.319 %
results from the	2			Efficiency Ey-Direction	97.619 %
polarization analyzer	1			Average Efficiency	97.969 %
polarization analyzer					

title	Unpolarized Light for Grating Simulation – Discussion at Examples
document code	GRT.0024
version	1.1
edition	VirtualLab Fusion Advanced
software version	2020.1 (Build 3.4)
category	Feature Use Case
further reading	<ul> <li><u>Talbot Images of A Conical Phase Mask</u></li> <li><u>Analysis and Design of Highly Efficient Polarization Independent</u> <u>Transmission Gratings</u></li> <li><u>Modeling and Design of Blazed Metagratings</u></li> </ul>