

How to Work with the Programmable Spectrum and Example (Black-Body Radiation)

Providing maximum versatility for your optical simulations is one of our most fundamental objectives. In this document we show you how to work with the Programmable Spectrum: that is, how to define a function that assigns a different complex weight to each wavelength/frequency present in the spectral make-up of a field, working under assumptions of stationary behaviour. The black-body emitter is one of the default spectrum models in VirtualLab, but we use it here as a basic programming example.

Where to Find the Programmable Spectrum

dit Programmable Spectrum Generator X	1 4 1 4 1 4 1 4 1 4 1 4 A	29
Generator Settings Specification in Wavelength Domain Central Wavelength Stope 	Spectral Spectral Spectral Spectral Spectral	provide Ge
Definition	Source Code Editor	1 • ×
Numerical Settings	opping 1 2 Complex value = new Complex(0,0); Positio 1 2 3 ************************************	ın [double]
Size of Wavelength Window 200 nm Number Data Points 50		

Setting Up the Sampling

Writing the Code

- The panel on the right shows a list of available independent parameters.
- Position represents the independent variable (either wavelength or frequency, as pre-set in the configuration dialogue).
- The code in the Main Function must return a Complex value per Position, which is determined by the function programmed by the user.
- Use the Snippet Body to group parts of the code in support functions.
- The final sampling of the function is determined by the settings from the previous dialogue.

Output

- The output is a one-dimensional graph of the programmed complex-valued function.
- It is possible to use the generated spectrum as the spectral make-up of the source in your Optical Setup.
- The number of separate spectral modes when the programmed spectrum is used in a source is equivalent to the number of samples in the spectrum.

Programming a Black-Body Spectrum

The power density associated to each wavelength (spectral density) when an emitter is assumed to behave like a black body at a certain temperature T is given by Planck's Law:

$$S(\lambda) = \frac{8\pi hc}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1} \tag{1}$$

- $S(\lambda) \rightarrow$ Spectral density
- $\lambda \rightarrow \text{Wavelength}$
- $h \rightarrow \ {\rm Planck's \ constant}$
- $c \rightarrow \ {\rm Speed}$ of light in vacuum
- $k \rightarrow \text{ Boltzmann constant}$
- $T \rightarrow$ Absolute temperature of black-body emitter

Black-Body Radiation

The maximum of the curve is achieved for the wavelength

$$\lambda_{\max} = \frac{b}{T} \tag{2}$$

where $b = 2.8977729 \times 10^{-3} \,\mathrm{m\,K}$ represents Wien's displacement constant.

Programmable Spectrum: Setting Up the Sampling

Edit Programmable Spectrum Generator		X III 81: Black Body Power Spectrum
Generator Settings		Diagram Table Value at x-Coordinate
Specification in Wavelength Domain Central Wavelength	O Specification In Frequency Domain	
Shape Definition		6 0.7 0.8
Specification in Wavelengt Central Wavelength = 600 Size of Wavelength Window	h Domain nm w = 1 um	Amplitude of Electric Field Co
Number of Data Points = 2	00	0.15 0.2
Numerical Settings	Number Data Points 200 🖨	
O Sampling Distance 5 nm		to that the N

Programmable Spectrum: Entering the Programming Interface

dit Programmable Spectrum Generator						
Generator Settings Specification in Wavelength Domain Central Wavelength 	O Sr	Source Code E	ditor Global Parameters Snippet Help Advanced Settin	ıgs	- D	×
Shape Definition		Snippet Body Main Function 9 5 7 1	<pre>Complex value = new Complex(0,6 /************************************</pre>	<pre>3); ************************************</pre>	Position [double]	
Size of Wavelength Window Sampling Distance	1 µm Numb	er D 🕋 🔐 🤇	Check Consistency Validity: 🚹 🚺	ОК	Cancel	Help
Size of Wavelength Window Sampling Distance	1 µm Numb 5 nm	er D	Check Consistency Validity: 🚹 🚺	ОК	Cancel	Help

Programmable Spectrum: Global Parameters

- Once you have triggered open the Edit dialogue, go to the Global Parameters tab.
- There, Add and Edit two global parameters:
 - double TemperatureKelvin (0, NaN): represents the absolute temperature at which the black body is radiating.
 - bool Normalize: will the function be scaled so that the maximum allowed amplitude value is 1 (true) or not (false)?

Source Code	Editor					-		×
Source Code	Global Parameters	Snippet H	elp Advanc	ed Settings	3			
General Par	rameters							
Variable N	lame		Гуре			Description		
Temperatu	TemperatureKelvin Double Value			e	Edit	Value: 5700 (Allowed range: 0 1	E+20)	
Normalize			Boolean		Edit	Value: True		
Add Remove V V V V V V V V V V V V V V V V V V V								
1	Check Consistence	y Validity:	0			OK Cancel	Н	elp

Programmable Spectrum: Snippet Help

Source Code	Editor						_		×
Source Code	Global Parameters	Snippet Help	Advanced Settings						
Title	Black-Body Spectru	m			Version	1.0			
Author					Last Modified	14/08/20	18		
spectrum a	coording to the black hould be scaled so th	body curve. Th	eureer can input whi weight is unity.	ch temperature ti	he black body sh	nall radiate a	at, and wi	hether th	le
Preview									
Bla	ck-Body	Spectr	um						^
Versi Last I	on: 1.0 Modified: Tues	sday, Augu	st 14, 2018						١.
Black	body radiation	is one of the snipr	he best-knowr	theories in	physics, ar	nd it is e to the bl	mploy ack-bo	ed	~
1	Check Consistency	Validity: 🕑			ОК	Ca	ncel	H	elp

- **Optional:** you can use the Snippet Help tab to write instructions, clarifications, and some metadata associated to your snippet.
- This option is very helpful to keep track of your progress with a programmable element.
- It is especially useful when the programmable element is later disseminated to be handled by other users!

Hint: Use HTML commands to format the text

Programmable Spectrum: Snippet Help

Source Code Editor	— —	×	Spinnet Help		пх
Source Code Global Parameters Snippet Help /	Advanced Settings		Shipper neip		
Title Black-Body Spectrum	Version 1.0		Black-Body S	pectrum	~
Author	Edit Programmable Spectrum Generator	×	Diack Douy o	poorum	
Black-body radiation is one of the best-known th spectrum according to the black-body curve. Th spectrum should be scaled so that the maximum	Generator Settings	ecification In Frequency Domain	Version: 1.0 Last Modified: Tueso Black-body radiation in employed across seven the black-body curve.	day, August 14, 2018 s one of the best-known theories in physics, and it is eral fields. This snippet generates a spectrum accordin The user can input which temperature the black body s	ng to shall
	Perintion Zeriation	Validity: 🥑	weight is unity.	r the spectrum should be scaled so that the maximum	
Preview	Parameters		PARAMETER	DESCRIPTION	
Black-Body Spectru	TemperatureKelvin	5700		The temperature in Kelvin of the black-body whose	_
Version: 1.0 Last Modified: Tuesday, Augus	☑ Normalize		TemperatureKelvin	radiation is simulated by the spectrum generated wit this snippet.	h
Black-body radiation is one of t			Normalize	This variable gives the user the option to scale the curso that the maximum weight is unity.	Irve
	Numerical Settings Size of Wavelength Window 1 µm Number Sampling Distance 5 nm	er Data Points 200 €			Close .::

Programmable Spectrum: Writing the Code

Programmable Spectrum: Using Your Snippet

Bear in mind that the function we have programmed only works for wavelength specification!	Edit Programmable Spectrum Generator Generator Settings	× Specification In Frequency Domain Validity: ♥ 	Modify your snippet again by clicking on Edit
Modify the sampling parameters according to the requirements of your simulation.	Parameters TemperatureKelvin ☑ Normalize	5700	You can modify the value of the global parameters you defined here Snippet Help Black-Body Spectrum Version: 1.0 Last Modified: Tuesday, August 14, 2018 Black-body radiation is one of the best-known theories in physics, and it is employed across several fields. This snippet generates a spectrum according to the black body yshall radiate at, and whether the spectrum should be scaled so that the maximum weight is unity.
	Numerical Settings Size of Wavelength Window 1 µm Sampling Distance 5 nm	Number Data Points 200 -	PARAMETER DESCRIPTION TemperatureKelvin The temperature, in Kelvin, of the black-body whose this simulated by the spectrum generated with this snippet. Normalize This variable gives the user the option to scale the curve so that the maximum weight is unity.

Programmable Spectrum: Output

Field Vector Component At One Point	
Diagram Table Value at x-Coordinate	
Wavelength [µm]	0.9 1
	Field Vector Component At One Point

Test the Code!

```
Main Function
Complex value = new Complex(0, 0);
// Constants not included in Globals.
const double BoltzmannConstant = 1.3806505e-23;
const double ProportionalityConstantWienLaw = 2.8977729e-3;
if (Normalize) // Code to run if the curve is to be normalized.
{
   // Eq. (2) computes the wavelength at which the curve presents its maximum.
    double wavelengthMaximum = ProportionalityConstantWienLaw / TemperatureKelvin;
   // The normalization constant is equal to the value of the curve at wavelengthMaximum.
    double normalizationConstant = (Math.Pow(wavelengthMaximum, 5) * (Math.Exp((Globals.PlanckConstant *
        Globals.VacuumSpeedOfLight) / (wavelengthMaximum * BoltzmannConstant * TemperatureKelvin)) - 1)) /
        (8 * Math.PI * Globals.PlanckConstant * Globals.VacuumSpeedOfLight);
   // Eq. (1) multiplied by normalization constant gives the final value of S per wavelength.
    value = normalizationConstant * (8 * Math.PI * Globals.PlanckConstant * Globals.VacuumSpeedOfLight) /
        (Math.Pow(Position, 5) * (Math.Exp((Globals.PlanckConstant * Globals.VacuumSpeedOfLight) / (Position)
        * BoltzmannConstant * TemperatureKelvin)) - 1));
// Continued in next page.
```

Test the Code!

```
Main Function (continued)
// Continued from previous page.
else // Code to run if curve is not to be normalized.
{
   // Eq. (1) gives the value of S per wavelength.
    value = (8 * Math.PI * Globals.PlanckConstant * Globals.VacuumSpeedOfLight) /
        (Math.Pow(Position, 5) * (Math.Exp((Globals.PlanckConstant * Globals.VacuumSpeedOfLight) /
        (Position * BoltzmannConstant * TemperatureKelvin)) - 1));
}
// Eq. (1) is in dimensions of energy, and the programmable spectrum in VirtualLab must return field
// amplitudes:
value = Complex.Sqrt(value);
return value;
// End of code.
```

How to Use Your Custom Spectrum in a Source

Document Information

title	How to Work with the Programmable Spectrum and Example (Black-Body Radiation)
document code	CZT.0095
version	1.0
toolbox(es)	Starter Toolbox
VL version used for simulations	7.4.0.49
category	Feature Use Case
further reading	 How to Work with the Programmable Light Source And Example (Gaussian Beam) Programming a Chirped Gaussian Pulse Spectrum