
How to Work with the Programmable Detector and
Example (Minimum and Maximum Wavelengths)

Abstract

Providing maximum versatility for your
optical simulations is one of our most
fundamental objectives. In this tutorial
we go over the Programmable
Detector: any physical information
contained in the vector field or ray
bundles reaching the detector
(depending on the simulation engine)
can be accessed with maximum
flexibility. We include here a simple
programming example to illustrate its
handling.

2 www.LightTrans.com

Where to Find the Programmable Detector: Catalog

3

2

3

4

5

6

7

7

1

Where to Find the Programmable Detector: Optical Setup

4

1
2

3

4

4

5

A Note on the Light Representation

• The vector electromagnetic field that represents light in physical
optics is always fully accessible in VirtualLab Fusion as it is
traced through the system.

• For this approach to be practical from the point of view of
computational efficiency, it is paramount to have at our disposal
a diverse set of mathematical techniques (efficient Fourier
transform algorithms, interpolation and fitting methods,
heterogeneous sampling mechanisms, among others).

• In the current version of VirtualLab Fusion, this translates into
the coexistence of several simulation engines:
− Ray tracing: pure ray tracing, yielding both 2 and 3D results
− Classic Field Tracing: handles equidistantly sampled EM field data
− 2nd Generation Field Tracing: is also able to handle non-equidistant EM

field data
• This is relevant to the Programmable Detector: a good

implementation of your detector needs to take into account how
light is represented in the different engines!

6

A Note on the Light Representation

• Additionally, in order to replicate a series of important physical
properties of light (partial coherence, for instance, whether
temporal or spatial) VirtualLab uses a mode decomposition.

• The different modes are accessible in the Programmable
Detector via a series of indices.

• Taking the different modes into account is also fundamental if a
Programmable Detector is to exhibit the correct desired physical
behaviour!

7

Writing the Code: Equidistant Field Data

• The Programmable Detector provides two different
programming dialogs. These are related to the
simulation engines. The first, titled Snippet for
Equidistant Field Data, handles electromagnetic field
objects sampled on an equidistant, rectangular x, y
grid.

• It is a direct result of Maxwell’s equations that in
homogeneous media only two of the six
electromagnetic components are independent;
consequently, the fields reaching the detector consist
only of Ex and Ey components, all the others being
thus unequivocally determined and possible to
calculate on demand if so required.

• Depending on the polarization characteristics of the
incoming field, Ex and Ey can be two independent
functions (local polarization) or obtained from a single
field function U via a constant Jones’ vector (constant
in x and y), so that Ex = Jx * U and Ey = Jy * U.

8

Writing the Code: Equidistant Field Data

• The panel on the right shows a list of available
independent parameters.

• IndexOfDetector and IndexOfLinkage refer to the
corresponding elements in the configuration of the
Optical Setup containing the detector in question.

• SystemTemperature and SystemPressure are
parameters of the whole system, whose value can be
used in the code to implement temperature- and
pressure-dependent responses.

• AutomaticFieldSize, …,
ManualNumberSamplingPoints are all parameters
which must influence the ultimate sampling of the
eventual equidistantly sampled field result, and
whose value can be modified in the Detector Window
and Resolution tab of the detector configuration
dialog.

9

Writing the Code: Equidistant Field Data

• ResolveLinearPhase and
ResolveRelativePosition are flags whose
value can be modified in the detector configuration
dialog, in the Detector Function tab. They indicate
the user’s wish to keep linear phases and position
shifts stored in the internal coordinate system of
the field or, conversely, resolved explicitly (which
results in higher sampling requirements, as per
Shannon-Nyquist). It is the programmer’s
responsibility to implement a code which reflects
these wishes correctly one way or another.

• InputField represents the field (equidistantly
sampled) reaching the detector. Following
VirtualLab’s mode concept, it consists of a set of
fully self-correlated electromagnetic modes, which
can exhibit different coherence properties among
themselves to faithfully mimic the coherence
properties of the physical field.

• ParentLightPath refers to the Optical Setup
containing the detector in question. Use the
Snippet Body to group parts of the code in support
functions.

10

Writing the Code: Non-Equidistant Field and Ray Data

• The other programming dialog in the
Programmable Detector handles non-equidistantly
sampled field data and rays.

• The panel on the right shows, again, a list of
available independent parameters.

• The only difference with the snippet for
equidistantly sampled field is in the fact that
InputField is replaced by RayTracingResult.

• Do not let the name RayTracingResult fool you!
This nomenclature is obsolete and will be phased
out in future versions.

• For non-equidistant fields, the vector field samples
may coincide with the ray samples. This snippet
can therefore return both ray information—if the
simulation is run with the Ray Tracing Engine—
and physical optics results—when the chosen
engine is 2nd Generation Field Tracing. It is the
programmer’s responsibility to account for both
instances.

11

Output

• The Programmable Detector must return, for
both snippets, a DetectorResultObject[]
array.

• This type of object may contain both
− Physical magnitudes: for instance, a detector

that computes the power carried by
− 2D graphic representations: think a detector

that shows all six electromagnetic
components in the detector plane.

• Each of the DetectorResultObject[i]
corresponds to either one physical
magnitude or one 2D graphic.

• The results of the Programmable Detector
can be used in the Parameter Run or
Parametric Optimization!

• The custom detector can be saved in the
catalog for later use.

Programming a Detector That Retrieves the Minimum
and Maximum Wavelengths in the Incoming Spectrum

Specifications Of the Desired Custom Detector

• The custom detector resulting from this exercise must work across the board, for ray and both
field tracing engines.

• The Programmable Detector will yield at least three results:
− The total number of samples in the spectrum
− The value of the minimum wavelength present in the spectrum
− The value of the maximum wavelength present in the spectrum

• Additionally, a user-controlled Boolean parameter will be included.

• This Boolean parameter will allow the user to select whether they want an additional result to
be returned: this additional result corresponds to the light-representing object (rays or fields)
reaching the detector.

13

Where to Find the Programmable Detector: Catalog

14

2

3

4

5

6

7

7

1

Where to Find the Programmable Detector: Optical Setup

15

1
2

3

4

4

16

Programmable Detector: Global Parameters

• Once you have triggered open the Edit
dialog, go to the Global Parameters tab.

• There, Add and Edit one global parameter:
− Boolean ShowLight = false (false, true):

a user-defined parameter which serves to
determine whether the object representing the
light that reaches the detector (vector field or
rays) will be returned as a detector result
alongside the values of the minimum and
maximum wavelengths present in the spectrum.

• Note that the Global Parameters, Snippet
Help and Advanced Settings tabs, and the
Snippet Body are all shared by and
common to the two specification modes
(equidistantly sampled fields, and rays and
non-equidistantly sampled fields).

17

Programmable Detector: Snippet Help

• Optional: you can use the Snippet Help
tab to write instructions, clarifications, and
some metadata associated to your snippet.

• This option is very helpful to keep track of
your progress with a programmable
element.

• It is especially useful when the
programmable element is later
disseminated to be handled by other
users!

Programmable Detector: Snippet Help

18

Programmable Detector: Writing the Code (1)

19

Declare and assign a
parameter for the
dimension of the

DetectorResultObject[]
array

Include the three default
results in the

DetectorResultsObject[]
to be returned

Conditionally include the fourth
result (the one showing the
field)

The total number of results depends on
whether the user-controlled parameter
ShowLight takes the value true or false.

Declare the object to
be returned by the

code Compute the
number of
samples in the
spectrum

Export Snippet to
save your work!

Are there errors in
your code?

Global parameter
defined by user in
Global Parameters
tab

Default global
parameters/variables

Programmable Detector: Writing the Code (2)

20

Export Snippet to
save your work!

Are there errors in
your code?

Default global
parameters/variables

Global parameter
defined by user in
Global Parameters
tab

Declare and assign a
parameter for the
dimension of the

DetectorResultObject[]
array

The total number of results depends on
whether the user-controlled parameter
ShowLight takes the value true or false.

Declare the object to
be returned by the

code

Compute the
number of
samples in the
spectrum

Conditionally include the fourth
result (the one showing the
field)

Include the three default
results in the

DetectorResultsObject[]
to be returned

21

Programmable Detector: Comparing the Snippets

• Variables need to be declared
separately and independently
in both snippets.

• It would even be possible to
use different nomenclature!

• It is the programmer’s
responsibility to ensure that
the code functions in an
equivalent manner in both
snippets.

• Of all the global parameters
(including those defined by the
user) only one is snippet-
dependent: the one
corresponding to light
representation (InputField
RayTracing Result)

Programmable Detector: Using Your Snippet

22

Modify your snippets by
clicking on Edit

You can modify the value
of the global parameters

you defined here

These correspond to the
ResolveLinearPhase and
ResolveRelativePosition
Boolean variables in the
snippets. Their value is
modified here.

In the Detector Window
and Resolution tab you

can modify the values of
the parameters

AutomaticFieldSize, …,
ManualNumberSampling

Points.

Save the Custom Detector to the Catalog

23

Output of the Programmable Detector

24

Test the Code!

25

// Declare and assign an integer parameter that will define the total number of
// results produced by the detector when a simulation is run:
int numberOfResults = 3;

// We modify the total number of results produced by the detector according to
// the value (true or false) of the user-defined Boolean variable that controls
// whether an additional result with the light-representing object (rays or
// fields) will be returned.
if (ShowLight) numberOfResults = 4;

// Declare the object to be returned by the code: an array of DetectorResultObject.
// The size of the array is determined by the variable defined above.
DetectorResultObject[] detectorResults = new DetectorResultObject[numberOfResults];

// A string that gives a name to the Programmable Detector. This name will appear
// alongside the results when the simulation is run.
string detectorName = "My detector";

Main Function (Equidistant)

Test the Code!

26

// Obtain one of the magnitudes to be provided by the detector: the total number
// of samples contained in the spectrum that reaches the detector.
int totalNumberOfSpectrumSamples = InputField.GetSortedListOfWavelength().Count;

// Construct the results:
detectorResults[0] = new DetectorResultObject(

new PhysicalValue(totalNumberOfSpectrumSamples,
PhysicalProperty.NoUnit,
"Total number of samples present in spectrum"),
detectorName);

detectorResults[1] = new DetectorResultObject(
new PhysicalValue(InputField.GetSortedListOfWavelength()[0],
PhysicalProperty.Length,
"Minimum wavelength in spectrum"),
detectorName);

detectorResults[2] = new DetectorResultObject(
new PhysicalValue(InputField.GetSortedListOfWavelength()[totalNumberOfSpectrumSamples - 1],
PhysicalProperty.Length,
"Maximum wavelength in spectrum"),
detectorName);

Main Function (Equidistant)

Test the Code!

27

// Conditionally include the last result:
if (ShowLight)
{

detectorResults[3] = new DetectorResultObject(
InputField,
detectorName,
"Field reaching detector");

}

return detectorResults;

Main Function (Equidistant)

Test the Code!

28

// Declare and assign an integer parameter that will define the total number of
// results produced by the detector when a simulation is run:
int numberOfResults = 3;

// We modify the total number of results produced by the detector according to
// the value (true or false) of the user-defined Boolean variable that controls
// whether an additional result with the light-representing object (rays or
// fields) will be returned.
if (ShowLight) numberOfResults = 4;

// Declare the object to be returned by the code: an array of DetectorResultObject.
// The size of the array is determined by the variable defined above.
DetectorResultObject[] detectorResults = new DetectorResultObject[numberOfResults];

// A string that gives a name to the Programmable Detector. This name will appear
// alongside the results when the simulation is run.
string detectorName = "My detector";

Main Function (Rays and Non-Equidistant)

Test the Code!

29

// Obtain one of the magnitudes to be provided by the detector: the total number
// of samples contained in the spectrum that reaches the detector.
int totalNumberOfSpectrumSamples = RayTracingResult.NumberOfWavelengths;

// Construct the results:
detectorResults[0] = new DetectorResultObject(

new PhysicalValue(totalNumberOfSpectrumSamples,
PhysicalProperty.NoUnit,
"Total number of samples in spectrum"),
detectorName);

detectorResults[1] = new DetectorResultObject(
new PhysicalValue(RayTracingResult.GetWavelengthForIndex(0),
PhysicalProperty.Length,
"Minimum wavelength in spectrum"),
detectorName);

detectorResults[2] = new DetectorResultObject(
new PhysicalValue(RayTracingResult.GetWavelengthForIndex(totalNumberOfSpectrumSamples - 1),
PhysicalProperty.Length,
"Maximum wavelength in spectrum"),
detectorName);

Main Function (Rays and Non-Equidistant)

Test the Code!

30

// Conditionally include the last result:
if (ShowLight)
{

detectorResults[3] = new DetectorResultObject(
RayTracingResult,
detectorName,
"Light reaching detector");

}

return detectorResults;

Main Function (Rays and Non-Equidistant)

Document Information

title How to Work with the Programmable Detector and Example (Minimum and
Maximum Wavelengths)

document code CZT.0098
version 1.0
toolbox(es) Starter Toolbox
VL version used for
simulations 7.4.0.49

category Feature Use Case

further reading
- Programming a Degree of Coherence Detector
- Programming a Detector for Diffractive Optics Merit Functions

Calculation

31 www.LightTrans.com

https://www.lighttrans.com/index.php?id=1442
https://www.lighttrans.com/index.php?id=1448

	How to Work with the Programmable Detector and Example (Minimum and Maximum Wavelengths)
	Abstract
	Where to Find the Programmable Detector: Catalog
	Where to Find the Programmable Detector: Optical Setup
	A Note on the Light Representation
	A Note on the Light Representation
	Writing the Code: Equidistant Field Data
	Writing the Code: Equidistant Field Data
	Writing the Code: Equidistant Field Data
	Writing the Code: Non-Equidistant Field and Ray Data
	Output
	Programming a Detector That Retrieves the Minimum and Maximum Wavelengths in the Incoming Spectrum
	Specifications Of the Desired Custom Detector
	Where to Find the Programmable Detector: Catalog
	Where to Find the Programmable Detector: Optical Setup
	Programmable Detector: Global Parameters
	Programmable Detector: Snippet Help
	Programmable Detector: Snippet Help
	Programmable Detector: Writing the Code (1)
	Programmable Detector: Writing the Code (2)
	Programmable Detector: Comparing the Snippets
	Programmable Detector: Using Your Snippet
	Save the Custom Detector to the Catalog
	Output of the Programmable Detector
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Document Information

