
How to Work with the Programmable Component and
Example (Ideal Grating)

Abstract

Providing maximum versality for your
optical simulations is one of our most
fundamental objectives. One of the most
flexible representatives of this potential
for customization in VirtualLab Fusion is
the Programmable Component: a feature
that allows you to freely transform the
incoming light according to whatever
model may be relevant for your
application. You can subsequently, of
course, combine your custom component
with all the other capabilities already
available in VirtualLab in order to
construct a full optical system according
to your requirements.

2 www.LightTrans.com

Where to Find the Programmable Component: Catalog

3

1

2

3

4

5

6

7

7

Where to Find the Programmable Component: Optical Setup

4

1

2 4

3

4

5

A Note on the Light Representation

• The vector electromagnetic field that represents light in physical
optics is always fully accessible in VirtualLab Fusion as it is
traced through the system.

• For this approach to be practical from the point of view of
computational efficiency, it is paramount to have at our disposal
a diverse set of mathematical techniques (efficient Fourier
transform algorithms, interpolation and fitting methods,
heterogeneous sampling mechanisms, among others).

• In the current version of VirtualLab Fusion, this translates into
the coexistence of several simulation engines:
− Ray tracing: pure ray tracing, yielding both 2 and 3D results
− Classic Field Tracing: handles equidistantly sampled EM field data
− 2nd Generation Field Tracing: is also able to handle non-equidistant EM

field data
• This is relevant to the Programmable Component: a good

implementation of your algorithm needs to take into account how
light is represented in the different engines!

6

A Note on the Light Representation

• Additionally, in order to replicate a series of important physical
properties of light (partial coherence, for instance, whether
temporal or spatial) VirtualLab uses a mode decomposition.

• The different modes are accessible in the Programmable
Component via a series of indices.

• Taking the different modes into account is also fundamental if a
Programmable Component is to exhibit the correct desired
physical behaviour!

7

Writing the Code: Input Transface

• There are three customizable snippets in the
Programmable Component, the first of which
is the Input Transface: the plane where the
field is retrieved from the previous free-space
propagation and imported into the
component.

• In other real components, which are
constructed from surfaces and media, the
geometry is accessible to the VirtualLab
code and, therefore, the software can
automatically determine a suitable Input
Transface for the component. Not so in the
Programmable Component, where the full
functionality is defined by the user.

• It falls then upon the user too to provide a
suitable Input Transface plane for their
component.

8

Writing the Code: Input Transface

• Some global parameters are available by
default in the snippet for the Input Transface.

• Width, Height and Thickness give the
dimensions of the bounding box (the three
dimensional cuboid which encompasses at
least the entire volume of the component).
The values of these parameters are input by
the user in the configuration dialog for the
component.

• SystemTemperature and SystemPressure
are parameters of the Optical Setup in which
the component is included.

• InputField refers to the individual field
modes which reach the Programmable
Component.

9

Writing the Code: Equidistant Field Data

• The Programmable Component provides two
different programming dialogs for light propagation
through the component in question. These are
related to the simulation engines. The first, titled
Snippet for Equidistant Field Data, handles
electromagnetic field objects sampled on an
equidistant, rectangular x, y grid.

• It is a direct result of Maxwell’s equations that in
homogeneous media only two of the six
electromagnetic components are independent;
consequently, the fields reaching the component
consist only of Ex and Ey components, all the
other four being thus unequivocally determined
and possible to calculate on demand if so
required.

• Depending on the polarization characteristics of
the incoming field, Ex and Ey can be two
independent functions (local polarization) or
obtained from a single field function U via a
constant Jones’ vector (constant in x and y), so
that Ex = Jx * U and Ey = Jy * U.

10

Writing the Code: Equidistant Field Data

• The panel on the right shows a list of available independent
parameters.

• MaterialAtOutputChannel contains information about the
material which has been defined in the system at the output
channel of the component. Depending on the nature of the
channel (reflection or transmission) this material can coincide
with the input one, or be a different one. The properties of this
object allow the user to access, among others, the
corresponding refractive index.

• Width, Height and Thickness give the dimensions of the
bounding box, which coincide with those for the Input
Transface.

• SystemTemperature and SystemPressure are parameters
of the whole system, whose value can be used in the code to
implement temperature- and pressure-dependent responses.

• InputField contains the full set of modes which represent
the light entering the component at the Input Transface. In
this snippet they are equidistantly sampled on an x, y grid.

• CurrentChannelType encodes information related to the
nature of the channel: its value is 1 for channels working in
transmission, and 0 for reflection.

• CurrentChannelName is a string with, as the name of the
variable itself suggests, the name of the channel.

11

Writing the Code: Non-Equidistant Field and Ray Data

• The last programming dialog in the Programmable Component handles
non-equidistantly sampled field data and rays.

• For non-equidistant fields, the vector field samples may coincide with
the ray samples. This snippet can therefore return both ray
information—if the simulation is run with the Ray Tracing Engine—and
physical optics results—when the chosen engine is 2nd Generation Field
Tracing. It is the programmer’s responsibility to account for both
instances.

• The panel on the right shows, again, a list of available independent
parameters. The first items on the list coincide with those in the other
snippet.

• InputRay refers to each of the individual rays or field samples
(depending on the engine) that reach the component.

• EvaluateReflection works in a similar way as CurrentChannelType
in the snippet for equidistantly sampled fields.

• RayBundleInformation contains information about the ray or field-
sample bundle which contains the currently handled instance.

• The code in this snippet is then implemented per ray or field sample.
The same code is then iterated by VirtualLab when the simulation is run
for each of the rays/field samples present.

• Do not let the names InputRay and RayBundleInformation fool you!
This nomenclature is obsolete and will be phased out in future versions.

12

Bounding Box Configuration

Thicknessz
x

y
H

eight

You can modify here the dimensions of the
bounding box which circumscribes your
custom component. The code in your

snippets will have to handle how the light is
transformed inside this volume, for the

various engines available.

Default input transface

13

Channel Definition

• You can add and delete different output
channels in your programmable component.

• Information regarding their name (also user-
defined) and whether they are a reflection
channel or not can then be accessed in the
snippet code.

• The most obvious configuration is one where
there are two possible channels
(transmission and reflection) but more
complex configurations are possible (for
instance, a grating with different propagating
orders).

• When a channel is marked as reflection the
output medium is adjusted accordingly.
However, it is the programmer’s
responsibility to make sure that the
coordinate systems are defined properly in
the code!

14

Output

Equidistantly sampled fields: Non-equidistantly sampled fields and rays:

Because the role of any component is to
transform the light, the output of the

Programmable Component must be of the
same type as the input, depending on the

engine (HarmonicFieldsSet or
RayInformation).

Programming an Ideal Grating

Ideal Grating

The objective of this example is to create a custom component that imitates the behaviour of an
ideal grating: for given incident direction and input and output media, it should compute the
outgoing direction of a certain diffraction order (in transmission), with the desired order and the
corresponding scalar diffraction efficiency preliminary user-defined parameters. The main
formula which shall be employed in this example is the grating equation:

16

Where to Find the Programmable Component: Catalog

17

1

2

3

4

5

6

7

7

Where to Find the Programmable Component: Optical Setup

18

1

2 4

3

4

19

Programmable Component: Global Parameters

• Once you have triggered open the Edit
dialog (Source Code Editor), go to the Global
Parameters tab.

• There, Add and Edit three parameters:
− Vector DiffractionOrder = (-1, 0),

(per component -1000, 1000): the index,
in x and y, of the desired diffraction order.

− VectorD Period = (750 nm, 1 m), (per
component 0 m, 1 m): the period of the
grating, in x and y.

− double ScalarEfficiency = 100 % (0 %,
100 %): the efficiency of the diffraction order.

• Use the button with the small “notes” icon to
add some explanation to your custom global
parameters.

20

Programmable Component: Snippet Help

• Optional: you can use the Snippet Help
tab to write instructions, clarifications, and
some additional data associated to your
snippet.

• This option is very helpful to keep track of
your progress with a programmable
element.

• It is especially useful when the
programmable element is later
disseminated to be handled by other
users!

Programmable Component: Snippet Help

21

Programmable Component: Writing the Code (1)

22

Declare and assign
output

Compute outgoing direction of
grating order according to Eq.
(1)

Loop through all the
incoming modes

Extract a single mode

Export Snippet to
save your work!

Are there errors in
your code?

Global parameters
defined by user in
Global Parameters
tab

Default global
parameters/variables Read in wavelength

and incoming direction
of mode

Read in
refractive

indices (input
and output)

Modify outgoing
direction of

member

Apply efficiency

Programmable Component: Writing the Code (2)

23

Declare and assign
output

Compute
outgoing direction
of grating order
according to Eq.
(1)

Loop through all the
incoming modes

Export Snippet to
save your work!

Are there
errors in your
code?

Global parameters
defined by user in
Global Parameters tab

Default global
parameters/variables

Read in wavelength,
position and incoming
direction of individual

sample

Generate output
sample from input

and modify its
direction

Compute and apply shift

Read in refractive
indices (output = input)

Energy conservation

24

Programmable Component: Comparing the Snippets

• Variables need to be declared
separately and independently
in both snippets.

• It would even be possible to
use different nomenclature!

• It is the programmer’s
responsibility to ensure that
the code functions in an
equivalent manner in both
snippets.

• Of all the global parameters
(including those defined by the
user) only one is snippet-
dependent: the one
corresponding to light
representation (InputField
RayTracing Result)

Programmable Component: Using Your Snippet

25

Modify your snippets by
clicking on Edit

You can modify the value
of the global parameters

you defined here

For the equidistant field
snippet, this controls with
what mechanism any
eventual overall position
shift of the field will be
handled: via padding
(increases sampling
effort) or via coordinate
system.

In the Bounding Box tab
you can modify the
dimensions of said

Bounding Box

In the
Geometry/Channels

menu you can control
some aspects of the

coordinate system, and
include additional output

channels for your
implementation

Save the Custom Component to the Catalog

26

Test the Code!

27

// Generate output (by copying input):
HarmonicFieldsSet hfsReturn = new HarmonicFieldsSet(InputField);

// Run loop through all the members of the input:
for (int memberIndex = 0; memberIndex < hfsReturn.Count; memberIndex++)
{

// Extract the individual member (Complex Amplitude):
ComplexAmplitude currentMember = hfsReturn[memberIndex];

// Read in the wavelength of the member:
double wavelengthOfMember = currentMember.Wavelength;

// Read in the incoming direction of the member:
Vector3D inputDirectionOfCurrentMember = currentMember.CentralDirection;

// Read in the refractive index of the medium in front of the grating:
Complex refractiveIndexInFrontOfGrating = currentMember.EmbeddingMedium.BaseMaterial.GetComplexRefractiveIndex(

wavelengthOfMember,
SystemTemperature,
SystemPressure);

// Continued in next slide.

Main Function (Equidistant)

Test the Code!

28

// Continued from last slide.

// Read in the refractive index in the medium behind the grating:
Complex refractiveIndexBehindGrating = MaterialAtOutputChannel.GetComplexRefractiveIndex(

wavelengthOfMember,
SystemTemperature,
SystemPressure);

// Compute the outgoing direction of the diffracted order in question:
Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(

inputDirectionOfCurrentMember,
refractiveIndexInFrontOfGrating,
refractiveIndexBehindGrating,
DiffractionOrder,
Period,
wavelengthOfMember);

// Assign direction to corresponding member:
currentMember.CentralDirection = diffractedDirection;

// Apply efficiency, as provided by user in global parameters:
currentMember *= Math.Sqrt(ScalarEfficiency);

// Continued in next slide.

Main Function (Equidistant)

Test the Code!

29

// Continued from last slide.

// Re-insert member in alloted place:
hfsReturn[memberIndex] = currentMember;

}

// Deliver result:
return hfsReturn;

Main Function (Equidistant)

Test the Code!

30

// Declare output:
List<RayInformation> outputRays = new List<RayInformation>();

// Read in wavelength of current sample:
double currentWavelength = InputRay.Wavelength;

// Read in position and direction of current incoming sample:
Vector3D positionOfInputSample = InputRay.Position;
Vector3D incomingDirection = InputRay.Direction;

// Read refractive index in front of grating:
Complex refractiveIndexInFrontOfGrating =

RayBundleInformation.MediumOfBundle.BaseMaterial.GetComplexRefractiveIndex(
InputRay.Wavelength,
SystemTemperature,
SystemPressure);

// Read refractive index behind grating (single embedding medium):
Complex refractiveIndexBehindGrating = refractiveIndexInFrontOfGrating;

// Continued in next slide.

Main Function (Non-Equidistant & Rays)

Test the Code!

31

// Continued from last slide.

// Compute the outgoing direction of the diffraction order:
Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(

incomingDirection,
refractiveIndexInFrontOfGrating,
refractiveIndexBehindGrating,
DiffractionOrder,
Period,
currentWavelength);

// Include sample in output and assign direction to corresponding member:
outputRays.Add(new RayInformation(InputRay));
outputRays[outputRays.Count - 1].Direction = diffractedDirection;

// Adjust phase:
VectorD DeltaKappa = new VectorD(0, 0);
DeltaKappa.X = 2.0 * Math.PI * DiffractionOrder.X / Period.X;
DeltaKappa.Y = 2.0 * Math.PI * DiffractionOrder.Y / Period.Y;
outputRays[outputRays.Count - 1].AbsolutePhase +=

new VectorD(positionOfInputSample.X, positionOfInputSample.Y) | DeltaKappa;

// Continued in next slide.

Main Function (Non-Equidistant & Rays)

Test the Code!

32

// Continued from last slide.

// Account for energy conservation:
double scalarSurfaceResponse = Math.Sqrt(ScalarEfficiency *

(refractiveIndexInFrontOfGrating.Re * InputRay.Direction.Z) /
(refractiveIndexBehindGrating.Re * diffractedDirection.Z));

outputRays[outputRays.Count - 1].EnergyConservationFactor *= scalarSurfaceResponse;

// Deliver result:
return outputRays.ToArray();

Main Function (Non-Equidistant & Rays)

Document Information

title How to Work with the Programmable Component and Example (Ideal
Grating)

document code CZT.0102
version 1.0
toolbox(es) Starter Toolbox
VL version used for
simulations 7.4.0.49

category Feature Use Case
further reading

33 www.LightTrans.com

	How to Work with the Programmable Component and Example (Ideal Grating)
	Abstract
	Where to Find the Programmable Component: Catalog
	Where to Find the Programmable Component: Optical Setup
	A Note on the Light Representation
	A Note on the Light Representation
	Writing the Code: Input Transface
	Writing the Code: Input Transface
	Writing the Code: Equidistant Field Data
	Writing the Code: Equidistant Field Data
	Writing the Code: Non-Equidistant Field and Ray Data
	Bounding Box Configuration
	Channel Definition
	Output
	Programming an Ideal Grating
	Ideal Grating
	Where to Find the Programmable Component: Catalog
	Where to Find the Programmable Component: Optical Setup
	Programmable Component: Global Parameters
	Programmable Component: Snippet Help
	Programmable Component: Snippet Help
	Programmable Component: Writing the Code (1)
	Programmable Component: Writing the Code (2)
	Programmable Component: Comparing the Snippets
	Programmable Component: Using Your Snippet
	Save the Custom Component to the Catalog
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Document Information

