
How to Work with the Programmable Component and 
Example (Ideal Grating)



Abstract

Providing maximum versality for your 
optical simulations is one of our most 
fundamental objectives. One of the most 
flexible representatives of this potential 
for customization in VirtualLab Fusion is 
the Programmable Component: a feature 
that allows you to freely transform the 
incoming light according to whatever 
model may be relevant for your 
application. You can subsequently, of 
course, combine your custom component 
with all the other capabilities already 
available in VirtualLab in order to 
construct a full optical system according 
to your requirements. 
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Where to Find the Programmable Component: Optical Setup
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A Note on the Light Representation

• The vector electromagnetic field that represents light in physical 
optics is always fully accessible in VirtualLab Fusion as it is 
traced through the system.

• For this approach to be practical from the point of view of 
computational efficiency, it is paramount to have at our disposal 
a diverse set of mathematical techniques (efficient Fourier 
transform algorithms, interpolation and fitting methods, 
heterogeneous sampling mechanisms, among others).

• In the current version of VirtualLab Fusion, this translates into 
the coexistence of several simulation engines: 
− Ray tracing: pure ray tracing, yielding both 2 and 3D results
− Classic Field Tracing: handles equidistantly sampled EM field data
− 2nd Generation Field Tracing: is also able to handle non-equidistant EM 

field data
• This is relevant to the Programmable Component: a good 

implementation of your algorithm needs to take into account how 
light is represented in the different engines!
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A Note on the Light Representation

• Additionally, in order to replicate a series of important physical 
properties of light (partial coherence, for instance, whether 
temporal or spatial) VirtualLab uses a mode decomposition. 

• The different modes are accessible in the Programmable 
Component via a series of indices. 

• Taking the different modes into account is also fundamental if a 
Programmable Component is to exhibit the correct desired 
physical behaviour!
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Writing the Code: Input Transface

• There are three customizable snippets in the 
Programmable Component, the first of which 
is the Input Transface: the plane where the 
field is retrieved from the previous free-space 
propagation and imported into the 
component.

• In other real components, which are 
constructed from surfaces and media, the 
geometry is accessible to the VirtualLab 
code and, therefore, the software can 
automatically determine a suitable Input 
Transface for the component. Not so in the 
Programmable Component, where the full 
functionality is defined by the user. 

• It falls then upon the user too to provide a 
suitable Input Transface plane for their 
component. 
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Writing the Code: Input Transface

• Some global parameters are available by 
default in the snippet for the Input Transface.

• Width, Height and Thickness give the 
dimensions of the bounding box (the three 
dimensional cuboid which encompasses at 
least the entire volume of the component). 
The values of these parameters are input by 
the user in the configuration dialog for the 
component.

• SystemTemperature and SystemPressure
are parameters of the Optical Setup in which 
the component is included. 

• InputField refers to the individual field 
modes which reach the Programmable 
Component. 
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Writing the Code: Equidistant Field Data

• The Programmable Component provides two 
different programming dialogs for light propagation 
through the component in question. These are 
related to the simulation engines. The first, titled 
Snippet for Equidistant Field Data, handles 
electromagnetic field objects sampled on an 
equidistant, rectangular x, y grid. 

• It is a direct result of Maxwell’s equations that in 
homogeneous media only two of the six 
electromagnetic components are independent; 
consequently, the fields reaching the component 
consist only of Ex and Ey components, all the 
other four being thus unequivocally determined 
and possible to calculate on demand if so 
required. 

• Depending on the polarization characteristics of 
the incoming field, Ex and Ey can be two 
independent functions (local polarization) or 
obtained from a single field function U via a 
constant Jones’ vector (constant in x and y), so 
that Ex = Jx * U and Ey = Jy * U. 
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Writing the Code: Equidistant Field Data

• The panel on the right shows a list of available independent 
parameters. 

• MaterialAtOutputChannel contains information about the 
material which has been defined in the system at the output 
channel of the component. Depending on the nature of the 
channel (reflection or transmission) this material can coincide 
with the input one, or be a different one. The properties of this 
object allow the user to access, among others, the 
corresponding refractive index.

• Width, Height and Thickness give the dimensions of the 
bounding box, which coincide with those for the Input 
Transface.

• SystemTemperature and SystemPressure are parameters 
of the whole system, whose value can be used in the code to 
implement temperature- and pressure-dependent responses.

• InputField contains the full set of modes which represent 
the light entering the component at the Input Transface. In 
this snippet they are equidistantly sampled on an x, y grid.

• CurrentChannelType encodes information related to the 
nature of the channel: its value is 1 for channels working in 
transmission, and 0 for reflection.

• CurrentChannelName is a string with, as the name of the 
variable itself suggests, the name of the channel.
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Writing the Code: Non-Equidistant Field and Ray Data

• The last programming dialog in the Programmable Component handles 
non-equidistantly sampled field data and rays. 

• For non-equidistant fields, the vector field samples may coincide with 
the ray samples. This snippet can therefore return both ray 
information—if the simulation is run with the Ray Tracing Engine—and 
physical optics results—when the chosen engine is 2nd Generation Field 
Tracing. It is the programmer’s responsibility to account for both 
instances.

• The panel on the right shows, again, a list of available independent 
parameters. The first items on the list coincide with those in the other 
snippet.

• InputRay refers to each of the individual rays or field samples 
(depending on the engine) that reach the component.

• EvaluateReflection works in a similar way as CurrentChannelType
in the snippet for equidistantly sampled fields. 

• RayBundleInformation contains information about the ray or field-
sample bundle which contains the currently handled instance. 

• The code in this snippet is then implemented per ray or field sample. 
The same code is then iterated by VirtualLab when the simulation is run 
for each of the rays/field samples present.

• Do not let the names InputRay and RayBundleInformation fool you! 
This nomenclature is obsolete and will be phased out in future versions. 
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Bounding Box Configuration

Thicknessz
x

y
H

eight

You can modify here the dimensions of the 
bounding box which circumscribes your 
custom component. The code in your 

snippets will have to handle how the light is 
transformed inside this volume, for the 

various engines available.

Default input transface
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Channel Definition

• You can add and delete different output 
channels in your programmable component. 

• Information regarding their name (also user-
defined) and whether they are a reflection 
channel or not can then be accessed in the 
snippet code. 

• The most obvious configuration is one where 
there are two possible channels 
(transmission and reflection) but more 
complex configurations are possible (for 
instance, a grating with different propagating 
orders). 

• When a channel is marked as reflection the 
output medium is adjusted accordingly. 
However, it is the programmer’s 
responsibility to make sure that the 
coordinate systems are defined properly in 
the code!
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Output

Equidistantly sampled fields: Non-equidistantly sampled fields and rays: 

Because the role of any component is to 
transform the light, the output of the 

Programmable Component must be of the 
same type as the input, depending on the 

engine (HarmonicFieldsSet or 
RayInformation).



Programming an Ideal Grating



Ideal Grating

The objective of this example is to create a custom component that imitates the behaviour of an 
ideal grating: for given incident direction and input and output media, it should compute the 
outgoing direction of a certain diffraction order (in transmission), with the desired order and the 
corresponding scalar diffraction efficiency preliminary user-defined parameters. The main 
formula which shall be employed in this example is the grating equation:
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Programmable Component: Global Parameters

• Once you have triggered open the Edit 
dialog (Source Code Editor), go to the Global 
Parameters tab.

• There, Add and Edit three parameters: 
− Vector DiffractionOrder = (-1, 0), 

(per component -1000, 1000): the index, 
in x and y, of the desired diffraction order.

− VectorD Period = (750 nm, 1 m), (per 
component 0 m, 1 m): the period of the 
grating, in x and y.

− double ScalarEfficiency = 100 % (0 %, 
100 %): the efficiency of the diffraction order. 

• Use the button with the small “notes” icon to 
add some explanation to your custom global 
parameters.
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Programmable Component: Snippet Help

• Optional: you can use the Snippet Help 
tab to write instructions, clarifications, and 
some additional data associated to your 
snippet. 

• This option is very helpful to keep track of 
your progress with a programmable 
element. 

• It is especially useful when the 
programmable element is later 
disseminated to be handled by other 
users!



Programmable Component: Snippet Help
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Programmable Component: Writing the Code (1)
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Declare and assign 
output

Compute outgoing direction of 
grating order according to Eq. 
(1)

Loop through all the 
incoming modes

Extract a single mode

Export Snippet to 
save your work! 

Are there errors in 
your code?

Global parameters 
defined by user in 
Global Parameters 
tab

Default global 
parameters/variables Read in wavelength 

and incoming direction 
of mode

Read in 
refractive 

indices (input 
and output)

Modify outgoing 
direction of 

member

Apply efficiency



Programmable Component: Writing the Code (2)
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Declare and assign 
output

Compute 
outgoing direction 
of grating order 
according to Eq. 
(1)

Loop through all the 
incoming modes

Export Snippet to 
save your work! 

Are there 
errors in your 
code?

Global parameters 
defined by user in 
Global Parameters tab

Default global 
parameters/variables 

Read in wavelength, 
position and incoming 
direction of individual 

sample

Generate output 
sample from input 

and modify its 
direction

Compute and apply shift

Read in refractive 
indices (output = input)

Energy conservation
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Programmable Component: Comparing the Snippets

• Variables need to be declared 
separately and independently 
in both snippets.

• It would even be possible to 
use different nomenclature!

• It is the programmer’s 
responsibility to ensure that 
the code functions in an 
equivalent manner in both 
snippets.

• Of all the global parameters 
(including those defined by the 
user) only one is snippet-
dependent: the one 
corresponding to light 
representation (InputField
RayTracing Result)



Programmable Component: Using Your Snippet
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Modify your snippets by 
clicking on Edit

You can modify the value 
of the global parameters 

you defined here

For the equidistant field 
snippet, this controls with 
what mechanism any 
eventual overall position 
shift of the field will be 
handled: via padding 
(increases sampling 
effort) or via coordinate 
system.

In the Bounding Box tab 
you can modify the 
dimensions of said 

Bounding Box

In the 
Geometry/Channels 

menu you can control 
some aspects of the 

coordinate system, and 
include additional output 

channels for your 
implementation



Save the Custom Component to the Catalog
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Test the Code!
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// Generate output (by copying input): 
HarmonicFieldsSet hfsReturn = new HarmonicFieldsSet(InputField); 

// Run loop through all the members of the input: 
for (int memberIndex = 0; memberIndex < hfsReturn.Count; memberIndex++)
{

// Extract the individual member (Complex Amplitude):
ComplexAmplitude currentMember = hfsReturn[memberIndex];

// Read in the wavelength of the member: 
double wavelengthOfMember = currentMember.Wavelength;

// Read in the incoming direction of the member: 
Vector3D inputDirectionOfCurrentMember = currentMember.CentralDirection; 

// Read in the refractive index of the medium in front of the grating: 
Complex refractiveIndexInFrontOfGrating = currentMember.EmbeddingMedium.BaseMaterial.GetComplexRefractiveIndex(

wavelengthOfMember, 
SystemTemperature, 
SystemPressure);

// Continued in next slide.

Main Function (Equidistant)



Test the Code!
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// Continued from last slide.  

// Read in the refractive index in the medium behind the grating: 
Complex refractiveIndexBehindGrating = MaterialAtOutputChannel.GetComplexRefractiveIndex(

wavelengthOfMember, 
SystemTemperature, 
SystemPressure);

// Compute the outgoing direction of the diffracted order in question:
Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(

inputDirectionOfCurrentMember, 
refractiveIndexInFrontOfGrating, 
refractiveIndexBehindGrating, 
DiffractionOrder, 
Period, 
wavelengthOfMember);

// Assign direction to corresponding member:
currentMember.CentralDirection = diffractedDirection; 

// Apply efficiency, as provided by user in global parameters: 
currentMember *= Math.Sqrt(ScalarEfficiency);

// Continued in next slide. 

Main Function (Equidistant)



Test the Code!
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// Continued from last slide.  

// Re-insert member in alloted place: 
hfsReturn[memberIndex] = currentMember; 

}

// Deliver result: 
return hfsReturn;

Main Function (Equidistant)



Test the Code!
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// Declare output: 
List<RayInformation> outputRays = new List<RayInformation>(); 

// Read in wavelength of current sample: 
double currentWavelength = InputRay.Wavelength; 

// Read in position and direction of current incoming sample: 
Vector3D positionOfInputSample = InputRay.Position; 
Vector3D incomingDirection = InputRay.Direction;

// Read refractive index in front of grating: 
Complex refractiveIndexInFrontOfGrating = 

RayBundleInformation.MediumOfBundle.BaseMaterial.GetComplexRefractiveIndex(
InputRay.Wavelength, 
SystemTemperature, 
SystemPressure);

// Read refractive index behind grating (single embedding medium): 
Complex refractiveIndexBehindGrating = refractiveIndexInFrontOfGrating;

// Continued in next slide. 

Main Function (Non-Equidistant & Rays)



Test the Code!
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// Continued from last slide. 

// Compute the outgoing direction of the diffraction order: 
Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(

incomingDirection, 
refractiveIndexInFrontOfGrating, 
refractiveIndexBehindGrating, 
DiffractionOrder, 
Period, 
currentWavelength);

// Include sample in output and assign direction to corresponding member:
outputRays.Add(new RayInformation(InputRay));
outputRays[outputRays.Count - 1].Direction = diffractedDirection; 

// Adjust phase: 
VectorD DeltaKappa = new VectorD(0, 0); 
DeltaKappa.X = 2.0 * Math.PI * DiffractionOrder.X / Period.X; 
DeltaKappa.Y = 2.0 * Math.PI * DiffractionOrder.Y / Period.Y; 
outputRays[outputRays.Count - 1].AbsolutePhase +=

new VectorD(positionOfInputSample.X, positionOfInputSample.Y) | DeltaKappa;

// Continued in next slide. 

Main Function (Non-Equidistant & Rays)



Test the Code!
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// Continued from last slide. 

// Account for energy conservation: 
double scalarSurfaceResponse = Math.Sqrt(ScalarEfficiency * 

(refractiveIndexInFrontOfGrating.Re * InputRay.Direction.Z) / 
(refractiveIndexBehindGrating.Re * diffractedDirection.Z));

outputRays[outputRays.Count - 1].EnergyConservationFactor *= scalarSurfaceResponse;

// Deliver result: 
return outputRays.ToArray(); 

Main Function (Non-Equidistant & Rays)
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