@HTTRANS .

How to Work with the Programmable Component and
Example (Ideal Grating)

Abstract

Providing maximum versality for your

4 ptesSep Vi 3 vy Optn sy —loesl| optical simulations is one of our most
e = fundamental objectives. One of the most
S flexible representatives of this potential
| e for customization in VirtualLab Fusion is
Cem e Progranmati ik the Programmable Component: a feature
Dsoo LD, % — that allows you to free_ly transform the
Fow Bonert_ — incoming light according to whatever
o et model may be relevant for your
:Op o Ty Sy application. Yc_>u can subsequently, of
St s o course, combine your custom component
Bk e %0 with all the other capabilities already
3 hosbm - available in VirtualLab in order to
< > |« » | construct a full optical system according
to your requirements.
2 www.LightTrans.com

Where to Find the Programmable Component: Catalog

=2% 1=

Start

-
File

Ph®

Boundary Coatn
Responses

Sources Functions

s Components Detectors Interfaces

Catalogs

Catalogs

¢ = b

Ligh
Sourg

Components Catalog

Definition Type I Templates

Black Box Component

Dfffractive Light Shaper

Diffractive Optical Element

Fiber Blement

GRIN Component

Inhomogeneous Medium Component
Off-Axis Parabolic Miror (Wedge Type)
Optical Interface Sequence
Programmable Compone t
Refractive Light Shaper
Single Optical Interfacd
Spherical Lens
Subsystem Component
Waveguide

Tools iff v

[] Show Preview

Edit Programmable Component

Bounding Box ; Componergt Spectfication :
Input Field Preparatiol Tracing)
Geometry / Relative Position of Fi osition of Input Transface [1 |
Channels (® Keep Stored in the Field's Coordinate System
Source Code Editor
/ O Resolve via Zero L Global Parameters Snippet Help Advanced Settings
5 [AR AR AR R A e R e e R v\‘;dtfhilﬂ_:ﬁl‘:]' Channel [Mate
1 = I jouble
Structure / Ngosthms § 2 *xxxxxxxxxx Snippet for propagating through the Height [double]
F -m = w 3 B O T) Thickness[double]
lnDU‘t Transface t Val '% 4 System Temperature [double]
i 5 SystemPressure [double]
Snippet for Equidistant Field Data / Wit Val § 6 /% dnitializesthe Harmonic Flelds Set (HFS) for re cune;n_Chann§|TypeiJ$ub|e]
3 7 HarmonicFieldsSet hfsReturn = new HarmonicFieldsSe CumentChannelName [string]
a8
Snippet for Non-Equidistant Field and Ray Data Edit Val & |9 /* Iteration through all member Harmonic Fields. *
10 for (int memberIndex = ©; memberIndex < hfsReturn.
11 1/ Extractlon of one single member Harmonic Fie
12 ComplexAmplitude currentMember = hfsReturn[men
13
14 R R R R KRR R R
15 **%* DO ALL OPERATIONS THAT APPLY TO THE CURRE
16 s s e e s s s s e s s e s e e e e
17 G e L e L
18
19 //The following lines are needed in case of re
20 if (CurrentChannelType == @) { // a ChnnelType
21 currentMember.HorizontalMirror_physicalCoc
22 .
. e 2 . X
43| [5* [Check Consistency| validity: 4* [Cancel Help
Goree ||t

Close Help

Where to Find the Programmable Component: Optical Setup

Edit Programmable Component X
Bounding Box ; Component Sflecification
P -
2: Optical Setup View #1 (My Optical Setup)* Input Field Preparation ffo racing)
[Fiter b x l Geometry / Relative Position of Field t™™®sition of Input Transface [i |
mer py
Channels (® Keep Stored in the Field's Coordinate System)
EIH Ught Sources _ O - -) Source Code Editor
Coordinate Break / esolve via Zero e Global Parameters Snippet Help Advanced Settings
(=) Components s [1 [RR AR AR AR AR AR ARAARRRARAEARRARARARAEAEAER AR AR AR n] Naterial AOutputC e
H 3 5 & || Width [doubl
;Of;zoé‘oentcfmm Caet:i‘)g Struchxe] Algorithms SRIEY| ++ssxxrsees Snippet for propagating through the H;agml[dootbﬂ]
a x Compon Functi = S] 3 || *srsrsasassssssr s s s s s s s s EAR I Thickness [double]
Diffractive Optical Element il Input Transface dit Validity:{ 5 | 4 System Temperature [double]
Fber B i 5 SystemPressure [double]
iber Element . z oy o o < nputField [HamonicFieldsSet
GRIN Component Programmable Snippet for Equidistant Field Data Edit Validity: g 6 / Inlt}a}lze Fhe Harmonic Fields Set (HFS) "F?r‘ re CurrentChannelType [double]
p M c Component i 7 HarmonicFieldsSet hfsReturn = new HarmonicFieldsSe CumentChannelName [string]
Inhomogeneous Medium Component &8
Off-Axis Parabolic Miror (Wedge Type) [Snippet for Non-Equidistant Field and Ray Data Edit Validly: | & | o /* Iteration through all member Harmonic Fields. *
g 10 for (int memberIndex = ©; memberIndex < hfsReturn.
Optical Irktesface Sequonce (I5) 11 //Extraction of one single member Harmonic Fie
Programmable Component — 12 ComplexAmplitude currentMember = hfsReturn[men
Single Optical Interfafis 13
Spherical Lens Position 14 KRR KRR KRR KR KRR KRR R AR R R
H Subsystem Compon 15 **%* DO ALL OPERATIONS THAT APPLY TO THE CURRE
16 BB o s s s e A
(#- Ideal Components i e [
- Camera Detector 18
#- Detectors 19 /;T?e follow’ing lines are n;e?e?/in c;se c;-F re
32 20 & CurrentChannelType == @ a ChnnelType
- Analyzers 21 currentMember.HorizontalMirror_physicalCoc
22 .
- e " " oo -
| [[Check Consistency| validity: 4* [Cancel Help

Ok]| Coce || e

A Note on the Light Representation

 The vector electromagnetic field that represents light in physical
optics is always fully accessible in VirtualLab Fusion as it is
traced through the system.

* For this approach to be practical from the point of view of
computational efficiency, it is paramount to have at our disposal
a diverse set of mathematical techniques (efficient Fourier
transform algorithms, interpolation and fitting methods,
heterogeneous sampling mechanisms, among others).

* Inthe cu_rrent version of Virtl_JaILab Fusior], this translates into
the coexistence of several simulation engines:

— Ray tracing: pure ray tracing, yielding both 2 and 3D results
— Classic Field Tracing: handles equidistantly sampled EM field data

— 2nd Generation Field Tracing: is also able to handle non-equidistant EM
field data

« This is relevant to the Programmable Component: a good
implementation of your algorithm needs to take into account how

mmmmm

light is represented in the different engines!

A Note on the Light Representation

r—— « Additionally, in order to replicate a series of important physical
properties of light (partial coherence, for instance, whether
temporal or spatial) VirtualLab uses a mode decomposition.

« The different modes are accessible in the Programmable
Component via a series of indices.

« Taking the different modes into account is also fundamental if a
Programmable Component is to exhibit the correct desired
physical behaviour!

Writing the Code: Input Transface

Source Code Editor

Source Code Global Parameters Snippet Help Advanced Settings

. TR EEEE RS EREE SRR T EEEE SR EE S A E TR EEE RS EREEEE R Y Width [double]
: ; - , i Height [double]
2 | | **xxxxx3 Snippet for calculating the plane which re ||Thickness [double]

"""""" INSERT YOUR CODE H

............

I Snippet Body I Main Function
0N W

11
12 //The following template can §
13 //Position of the front plane
14 plane.Position = new Vectc
15 //Orientation of the front p
16 plane.BaseVectors = new Coo
17

18 return plane;

“#3| |@* | Check Consistency Validity: !“ i 0K Cancel

--- S‘)’S‘ em Temperature [double}
SystemPressure [double]

There are three customizable snippets in the
Programmable Component, the first of which
is the Input Transface: the plane where the
field is retrieved from the previous free-space
propagation and imported into the
component.

In other real components, which are
constructed from surfaces and media, the
geometry is accessible to the VirtualLab
code and, therefore, the software can
automatically determine a suitable Input
Transface for the component. Not so in the
Programmable Component, where the full
functionality is defined by the user.

It falls then upon the user too to provide a
suitable Input Transface plane for their
component.

Writing the Code: Input Transface

Source Code Editor O X
Source Code Global Parameters Snippet Help Advanced Settings
E T e e e e Width [double]
8 1 i : - Height [double]
SO | i Snippet for calculating the plane which re ||Thickness [double]
I.I:_ 3 ... SystemTemperature [double}
_;éﬁ 4 SystemPressure [double]
m—15 plane = new o
"~ ~
§ 6
3 N e ————
SR ***ERELRISES INSERT YOUR CODE H
I sssssssnsess
10 | | e s R
11
12 //The following template can §
13 //Position of the front plane
14 plane.Position = new Vector3l
15 //Orientation of the front p
16 plane.BaseVectors = new Coo
17
18 return plane;
4
4| [&% | Check Consistency| validity: 4 ||l 0K Cancel

Some global parameters are available by
default in the snippet for the Input Transface.

Width, Height and Thickness give the
dimensions of the bounding box (the three
dimensional cuboid which encompasses at
least the entire volume of the component).
The values of these parameters are input by
the user in the configuration dialog for the
component.

SystemTemperature and SystemPressure
are parameters of the Optical Setup in which
the component is included.

InputField refers to the individual field
modes which reach the Programmable
Component.

Writing the Code: Equidistant Field Data

« The Programmable Component provides two
different programming dialogs for light propagation

through the component in question. These are Source Code Editor D x
related to the simulation engines. The first, titled [Salrcs Code | Gobal Parameters Srippet Help Advanced Setings
Snippet for Equidistant Field Data, handles . T = | [
electromagnetic field objects sampled on an 5|2 || s Snippet for propagating through the pf |vegt ol
equidistant, rectangular x, y grid. 5|4 SreenTerperaue 4tk
« ltis a direct result of Maxwell’'s equations that in Fle | |/* tnitialize the Harmontc Fields set (HFs) for ref] |[tfed Hamnichedca
homogeneous media only two of the six i, § R R R O amb
electromagnetic components are independent; % |9 | |/* 1teration through all member Harmonic Fields. *
consequently, the fields reaching the component BN " e raction GF o Singie pesbor tarsnic P14
consist only of Ex and Ey components, all the 12 ComplexAmplitude currentMagber = hfsReturn[men
other four being thus unequivocally determined - JrerterEse TS
and pozsible to calculate on demand if so * *>* 0O ALL OPERATIONS]
required. A
« Depending on the polarization characteristics of 19 //The following lines |
the incoming field, Ex and Ey can be two . bbbt lgor
independent functions (local polarization) or 22
obtained from a single field function U via a <
constant Jones’ vector (constant in x and y), so T ™ — =

that Ex=Jx *Uand Ey = Jy * U.

Writing the Code: Equidistant Field Data

« The panel on the right shows a list of available independent
parameters.

* MaterialAtOutputChannel contains information about the Source Code Editor o X
material which has been defined in the system at the output :

eCode Global Parameters Snippet Help Advanced Settings

channel of the component. Depending on the nature of the
channel (reflection or transmission) this material can coincide
with the input one, or be a different one. The properties of this
object allow the user to access, among others, the
corresponding refractive index.

 Width, Height and Thickness give the dimensions of the
bounding box, which coincide with those for the Input
Transface.

o : ~ || Width [double]

"""""" Snippet for propagating through the Height [double]

--- T‘hlckness [dOubleE

System Temperature [double]

SystemPressure [double]

/* Initialize the Harmonic Fields Set (HFS) for re Cqm;&h;anpeﬁgUaé
ar o sSet hfsReturn = new Har icFieldsSe CurrentChannelName [string]

* Iteration through all member Harmonic Fields. *
for (int memberIndex = @; memberIndex < hfsReturn.

[Snippet Bodyl Main Function (8"
=
® W0 NN B WN e

[y

* SystemTemperature and SystemPressure are parameters ~ i T e
of the whole system, whose value can be used in the code to 5 R CATIED CED = S ECIT Y
implement temperature- and pressure-dependent responses. 14 B[/rsssssssassassssasssess
. . . 15 DO ALL OPERATIONS
« InputField contains the full set of modes which represent Sl e
the light entering the component at the Input Transface. In Rl e
this snippet they are equidistantly sampled on an x, y grid. - e it
* CurrentChannelType encodes information related to the 20 if (CurrentChannelType
nature of the channel: its value is 1 for channels working in e FREAL
transmission, and O for reflection. - Ty
* CurrentChannelName is a string with, as the name of the :
variable itself suggests, the name of the channel.) |4* | Check Consistency Validity: 4" Il Cancel Help

10

Writing the Code: Non-Equidistant Field and Ray Data

Source Code Editor

SourceCode Global Parameters Snippet Help Advanced Settings

§ [1 O | /et r s n s s s e aa a R R AR RS R R R SRR AR AR R TR R AR AR R AR AR RS Width [double]

2 | / _ _ Height [double]

§ [2 | | FEEEEEEEEEE Snippet for ray tracing ****saxsissa Thickness [double]

ué T || R R R R R R 7 System Temperature [double]
'fé a SystemPressure [double]
= RayInformation[] outputRays = new RayInformation[1]; EvaluateReflection [double]
g 6 outputRays[@] = new Ra formation(InputRay); : e o
B 7

& |8 return outputRays;

A

4| |§* | Check Consistency| Validity: 4" ||l Cancel Help

The last programming dialog in the Programmable Component handles
non-equidistantly sampled field data and rays.

For non-equidistant fields, the vector field samples may coincide with
the ray samples. This snippet can therefore return both ray
information—if the simulation is run with the Ray Tracing Engine—and
physical optics results—when the chosen engine is 2" Generation Field
Tracing. It is the programmer’s responsibility to account for both
instances.

The panel on the right shows, again, a list of available independent
parameters. The first items on the list coincide with those in the other
shippet.

InputRay refers to each of the individual rays or field samples
(depending on the engine) that reach the component.

EvaluateReflection works in a similar way as CurrentChannelType
in the snippet for equidistantly sampled fields.

RayBundleInformation contains information about the ray or field-
sample bundle which contains the currently handled instance.

The code in this snippet is then implemented per ray or field sample.
The same code is then iterated by VirtualLab when the simulation is run
for each of the rays/field samples present.

Do not let the names InputRay and RayBundleInformation fool you!
This nomenclature is obsolete and will be phased out in future versions.

11

Bounding Box Configuration

x |

Edit Programmable Component
{Bounding Box | Companent Specfication
Cuboid Parameters
G ! , |
o Width in X | 20 mm |
Heightin Y | 20 mm |

/Q Thickness in Z | 0mm|

Position /

Orientation

S-tructuref

Function : : :

You can modify here the dimensions of the
$ bounding box which circumscribes your
_ I custom component. The code in your

Feopegetion snippets will have to handle how the light is
= transformed inside this volume, for the
‘:’Is N various engines available.
Propagation

Channels

Y
A Coreel | [t

Default input transface

12

Channel Definition

You can add and delete different output
channels in your programmable component.

Information regarding their name (also user-
defined) and whether they are a reflection
channel or not can then be accessed in the
snippet code.

The most obvious configuration is one where
there are two possible channels
(transmission and reflection) but more
complex configurations are possible (for
instance, a grating with different propagating
orders).

When a channel is marked as reflection the
output medium is adjusted accordingly.
However, it is the programmer’s
responsibility to make sure that the
coordinate systems are defined properly in
the code!

Edit Programmable Component

®

Ge?)metw
Channels

Intemal Coordinate System Reference Points

+ Add — Remove

Optical Channels

Name

Reference Point Reflection?

Axes

Medium

Air in Homogeneous Medi .
iyl Front Centerof E L iy
QI =
P 4 T Reflection Air in Homogeneous Medi .
Back Center of E x ~ ,
r”qsition | ¥ L] Channel & & 7 Q
Orientation P — — Reflection v || Air in Homogeneous Medi ..
@ = = O Channel é}—i B 7 9
Structure /
Function
Propagation
Propagation
Channels
= _QK Cancel Help

13

Output

Equidistantly sampled fields:

Non-equidistantly sampled fields and rays:

Source Code Editor

Global Parameters Snippet Help Advanced Settings

M

Source Code Editor

| Snippet Body I Main Function

Global Parameters Snippet Help Advanced Settings

ONOWV A WNE

/n;’xnxx;n;;x-x;x::;x:xxxxx;,n;xx-x;x::xx.xxx;;x;

R R R R Snippet {OP Pay tracing R R R R

RayInformation[] outputRays = new RayInformation

outputRays[@] = new RayI 1(InputRay);

nformatio

return outputRays;

Because the role of any component is to
transform the light, the output of the
Programmable Component must be of the

same type as the input, depending on the
engine (HarmonicFieldsSet or
RayInformation).

= Width [double]
§ 2 *xxxxxxxxxx Snippet for propagating through the ; Height [double]
T3] FFEERESRERLEXRREERXSTRRTETXEXRER XX SR REXERLEXXRED Thickness [double]
‘® 4 SystemTemperature [double]
E_ 5 SystemPressure [double]
§' 6 /* Initialize the Harmonic Fields Set (HFS) for re CwmmCh;mdnmeEguuﬂ
3 7 HarmonicFieldsSet hfsReturn = new HarmonicFieldsSe CumrentChannelName [string]
al8
fi 9 /* Iteration through all member Harmonic Fields. *

1@ for (int memberIndex = ©; memberIndex < hfsReturn.

11 //Extraction of one single member Harmonic Fie

12 ComplexAmplitude currentMember = hfsReturn[men

13

14 R R R R R KR R KK R R

15 *%* DO ALL OPERATIONS THAT APPLY TO THE CURRE

16 EEX o o o o e e e e e e e

17 30D 0NN RGN DR G NGRS e

18

19 //The following lines are needed in case of re

28 if (CurrentChannelType == @) { // a ChnnelType

21 currentMember.HorizontalMirror_physicalCoc

22 .

. —_— + . e o
| [[Check Consistency | validity: 4* [Cancel Help

Width [double]

Height [double]

Thickness [double]

System Temperature [double]
System Pressure [double]

[Ra
EvaluateReﬂechon [doubie]

{le A

Check Consistency | Validity: 4" ||

Cancel Help

14

Programming an ldeal Grating

Ideal Grating

The objective of this example is to create a custom component that imitates the behaviour of an
ideal grating: for given incident direction and input and output media, it should compute the
outgoing direction of a certain diffraction order (in transmission), with the desired order and the
corresponding scalar diffraction efficiency preliminary user-defined parameters. The main
formula which shall be employed in this example is the grating equation:

KO = K™ 4 ARy, (1)

k= (ky,ky)
out 27T
AK,,, = n°"—m

d

m — diffraction order

d — grating period
For a single embedding medium, Eq. (1) reduces to the well-known d [sin (60:) — sin (6™)] = mA

16

Where to Find the Programmable Component: Catalog

BO-548

Sources Functions Catalogs

¢ = b

s Components Detectors Interfaces

File

Ph®

Boundary Coatn
Responses

Start

Ligh
Sourg

Catalogs

Components Catalog

Definition Type I Templates

Black Box Component

Dfffractive Light Shaper

Diffractive Optical Element

Fiber Blement

GRIN Component

Inhomogeneous Medium Component
Off-Axis Parabolic Miror (Wedge Type)
Optical Interface Sequence
Programmable Compone t
Refractive Light Shaper
Single Optical Interfacd
Spherical Lens
Subsystem Component
Waveguide

Edit Programmable Component

Tools iff v

[] Show Preview

Bounding Box ; Componergt Spectfication :
Input Field Preparatiol Tracing)
Geometry / Relative Position of Fi osition of Input Transface [1 |
Channels (® Keep Stored in the Field's Coordinate System
Source Code Editor
/ O Resolve via Zero L Global Parameters Snippet Help Advanced Settings
5 [AR AR AR R A e R e e R v\‘;dtfhilﬂ_:ﬁl‘:]' Channel [Mate
1 = I jouble
Structure / Ngosthms § 2 *xxxxxxxxxx Snippet for propagating through the Height [double]
F -m = w 3 B O T) Thickness[double]
lnDU‘t Transface t Val '% 4 System Temperature [double]
i 5 SystemPressure [double]
Snippet for Equidistant Field Data / Wit Val § 6 /% dnitializesthe Harmonic Flelds Set (HFS) for re cune;n_Chann§|TypeiJ$ub|e]
3 7 HarmonicFieldsSet hfsReturn = new HarmonicFieldsSe CumentChannelName [string]
a8
Snippet for Non-Equidistant Field and Ray Data Edit Val & |9 /* Iteration through all member Harmonic Fields. *
10 for (int memberIndex = ©; memberIndex < hfsReturn.
11 1/ Extractlon of one single member Harmonic Fie
12 ComplexAmplitude currentMember = hfsReturn[men
13
14 R R R R KRR R R
15 **%* DO ALL OPERATIONS THAT APPLY TO THE CURRE
16 s s e e s s s s e s s e s e e e e
17 G e L e L
18
19 //The following lines are needed in case of re
20 if (CurrentChannelType == @) { // a ChnnelType
21 currentMember.HorizontalMirror_physicalCoc
22 .
. e 2 . X
43| [5* [Check Consistency| validity: 4* [Cancel Help
Goree ||t

Close Help

17

Where to Find the Programmable Component: Optical Setup

Edit Programmable Component X
Bounding Box ; Component Sflecification
P -
2: Optical Setup View #1 (My Optical Setup)* Input Field Preparation ffo racing)
[Fiter b x l Geometry / Relative Position of Field t™™®sition of Input Transface [i |
mer py
Channels (® Keep Stored in the Field's Coordinate System)
EIH Ught Sources _ O - -) Source Code Editor
Coordinate Break / esolve via Zero e Global Parameters Snippet Help Advanced Settings
(=) Components s [1 [RR AR AR AR AR AR ARAARRRARAEARRARARARAEAEAER AR AR AR n] Naterial AOutputC e
H 3 5 & || Width [doubl
;Of;zoé‘oentcfmm Caet:i‘)g Struchxe] Algorithms SRIEY| ++ssxxrsees Snippet for propagating through the H;agml[dootbﬂ]
a x Compon Functi = S] 3 || *srsrsasassssssr s s s s s s s s EAR I Thickness [double]
Diffractive Optical Element il Input Transface dit Validity:{ 5 | 4 System Temperature [double]
Fber B i 5 SystemPressure [double]
iber Element . z oy o o < nputField [HamonicFieldsSet
GRIN Component Programmable Snippet for Equidistant Field Data Edit Validity: g 6 / Inlt}a}lze Fhe Harmonic Fields Set (HFS) "F?r‘ re CurrentChannelType [double]
p M c Component i 7 HarmonicFieldsSet hfsReturn = new HarmonicFieldsSe CumentChannelName [string]
Inhomogeneous Medium Component &8
Off-Axis Parabolic Miror (Wedge Type) [Snippet for Non-Equidistant Field and Ray Data Edit Validly: | & | o /* Iteration through all member Harmonic Fields. *
g 10 for (int memberIndex = ©; memberIndex < hfsReturn.
Optical Irktesface Sequonce (I5) 11 //Extraction of one single member Harmonic Fie
Programmable Component — 12 ComplexAmplitude currentMember = hfsReturn[men
Single Optical Interfafis 13
Spherical Lens Position 14 KRR KRR KRR KR KRR KRR R AR R R
H Subsystem Compon 15 **%* DO ALL OPERATIONS THAT APPLY TO THE CURRE
16 BB o s s s e A
(#- Ideal Components i e [
- Camera Detector 18
#- Detectors 19 /;T?e follow’ing lines are n;e?e?/in c;se c;-F re
32 20 & CurrentChannelType == @ a ChnnelType
- Analyzers 21 currentMember.HorizontalMirror_physicalCoc
22 .
- e " " oo -
| [[Check Consistency| validity: 4* [Cancel Help

Ok]| Coce || e

18

Programmable Component: Global Parameters

Once you have triggered open the Edit
dialog (Source Code Editor), go to the Global
Parameters tab.

There, Add and Edit three parameters:

- Vector DiffractionOrder = (-1, 0),
(per component -1000, 1000): the index,
in x and y, of the desired diffraction order.

- VectorD Period = (750 nm, 1 m), (per
component @ m, 1 m): the period of the
grating, in x and y.

— double ScalarEfficiency = 100 % (0 %,
100 %): the efficiency of the diffraction order.

Use the button with the small “notes” icon to
add some explanation to your custom global
parameters.

Source Code Editor

Source Code { Giobal Pa

General Parameters

ete{s Snippet Help Advanced Settings

Variable Name
DiffractionOrder
Period
ScalarEfficiency

Global Materials

Type Description
Integer Vector 2D Edit
Double Vector 2D Edit

B | Value: (-1; 0) (Allowed range per component:
B | Value: (750 nm; 1 m) (Allowed range per com

Ea (2 [

Hint: it is possible to add

Variable Name

Some clarifying text to each (RN

global parameter to facilitate

use of the snippet for other
users!

Global Media
Variable Name Medium | Add
v
| & Check Consistency | Validity: @ Cancel Help

19

Programmable Component: Snippet Help

Source Code Editor O X

Source Code Global Parameters 5ﬂ'DD€¢He|D Advanced Settings

Title \Custom |deal Grating] Version ’ 10 ’

Author | | LestModified [19/11/2018 B~ |

This Programmable Component replicates the behaviour of an idealized grating. The user can manually fix the material in front of and
behind the grating, the period of the grating, the diffraction order they wish to see, and the scalar efficiency comesponding to that order.

Preview
. A
Custom Ideal Grating
Version: 1.0
Last Modified: Monday, November 19, 2018
v

This Programmable Component replicates the behaviour of an idealized grating. The

Cancel Help

“43 |[* | Check Consistency Validity: @

Optional: you can use the Snippet Help
tab to write instructions, clarifications, and
some additional data associated to your
snippet.

This option is very helpful to keep track of
your progress with a programmable
element.

It is especially useful when the
programmable element is later
disseminated to be handled by other
users!

20

Programmable Component: Snippet Help

Source Code Editor [m} X
Tile [Custom Ideal Grating Version 10
1 I 1
I; Edit Programmable Component
This Programmable
behind the grating, Bounding Box
Input Field Preparation ffor Field Tracing)
Geometry / Relative Position of Field to Position of Input Transface Bl
Channels ® Keep Stored in the Field's Coordinate System
O Resolve via Zero Padding
Algorithms
T Position / o
Orientation 3 o
Input Transface / Edit Validity: V]
Custorn ' _ o : .
@ Snippet for Equidistant Field Data o/ Edit Validity: @
Version: 1 Structure / Snippet for Non-Equidistant Field and Ray Data / Edit Validity: V]
Last Modif Function
This Progra ;’I_’ E memuters
—
v Lt DiffractionOrder] A | 0):
“%| | 3% |Check || Propagation
c Period] 750nm| | 1m]
ScalarEfficiency
(7 lelp
d Coree ||t

Snippet Help O

Custom ldeal Grating

Version: 1.0
Last Modified: Monday, November 19, 2018

This Programmable Component replicates the behaviour of an idealized grating. The
user can manually fix the material in front of and behind the grating, the period of the
grating, the diffraction order they wish to see, and the scalar efficiency corresponding
to that order.

PARAMETER DESCRIPTION

DiffractionOrder The index of the diffraction order that the user wishes to see.

Period The two-dimensional period of the grating.

The scalar efficiency assigned to the order of interest (as

ScalarEficlency defined by the parameter DiffractionOrder).

Close

21

Programmable Component: Writing the Code (1)

Declare and assign
output

Extract a single mode

Read in wavelength
and incoming direction
of mode

Read in
refractive
indices (input -
and output)

Modify outgoing
direction of
member

Export Snippet to
save your work!

Source Code Editor

¢ Code | Global P

4 Snippet Help Advanced Settings

HarmonicFieldsSet hfsReturn = new HarmonicFieldsSet(InputField);

for (int memberIndex =

Loop through all the

©; memberIndex < hfsReturn.Count; memberIndex++) incoming modes

{\ ComplexAmplitude currentMember = hfsReturn[memberIndex];
L double wavelengthOfMember = currentMember.Wavelength;
Vector3D inputDirectionOfCurrentMember = currentMember.CentralDirection;
Complex refractiveIndexInFrontOfGrating = currentMember.EmbeddingMedium.BaseMaterial.GetComplexRefractiveIndex(
wavelengthOfMember,
SystemTemperature,
~a SystemPressure);
Complex refractiveIndexBehindGrating = MaterialAtOutputChannel.GetComplexRefractiveIndex(
wavelengthOfMember,
SystemTemperature,
SystemPressure);
Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(

currentMember.CentralDirection = diffractedoiru
currentMember *= Math.Sqrt(ScalarEfficiency);

}

inputDirectionOfCurrentMember,
refractiveIndexInFrontOfGrating,
refractiveIndexBehindGrating,

DiffractionOrder, Compute outgoing direction of
Period, . .
sl T O grating order according to Eq.

(1) -
Apply efficiency

hfsReturn[memberIndex] = currentMember;

Are there errorsin

/ your code?
return hfsReturn;

AL

Height [double]

Thickness [double]

System Temperature [double]
System Pressure [double]

nputField [HarmonicFieldsSe
CumentChannel Type [double]
CumentChannelName [string]

Diffracti 1.19"7[ecto

SéalarBficiem;y [double]

7
- § Check Consistency | Validity: @)

A}

Cancel Help

J

Default global
parameters/variables

Global parameters
defined by user in
Global Parameters
tab

22

Programmable Component: Writing the Code (2)

Declare and assign
output

Read in wavelength,
position and incoming __
direction of individual
sample

Generate output
sample from input
and modify its
direction

N\

Export Snippet to
save your work!

Source Code Editor

Global Parameters Snippet Help Advanced Settings

lSnippetBodyl Ma\w Function /&

/

\

2 B List<RayInformation> outputRays = new List<RayInformation>();
3 double currentWavelength = InputRay.Wavelength; !‘OOp t.hrough all the Thickness [dotBle]
| 49 {Vector3D positionOfInputSample = InputRay.Position; Incoming modes System Temperature [double]
5 3D incomingDirection = InputRay.Direction; Syste[nPrPFsure [double]
nputRay [Raylnformation

0 9 . i EvaluateReflection [double]
7 Complex refractiveIndexInFrontOfGrating = RavBund on [Additiona
8 RayBundleInformation.MediumOfBundle.BaseMaterial.GetComplexRefractiveIndex(

9 InputRay.Wavelength, Read in refractive Period orC

10 SystemTemperature, .. . ScalarEfficiency [double]
11 Systemppessupe); |nd|C€S (Output - Input)

12

13 Complex refractiveIndexBehindGrating = refractiveIndexInFrontOfGrating;

14

15 Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(ComPUte . .

16 incomingDirection, OUthIFIg direction

17 refractiveIndexInFrontOfGrating, .

18 refractiveIndexBehindGrating, of gratlng order

19 DiffractionOrder, according to Eq_

20 Period, 1

)\ currentlWavelength); ()

22

23 outputRays.Add(new RayInformation(InputRay));

24 outputRays[outputRays.Count - 1].Direction = diffractedDirection;

25

26 VectorD DeltaKappa = new VectorD(@, 0);

27 DeltaKappa.X = 2.0 * Math.PI * DiffractionOrder.X / Period.X;

28 DeltaKappa.Y = 2.8 * Math.PI * DiffractionOrder.Y / Period.Y; :

29 outputRays[outputRays.Count - 1].AbsolutePhase += CompUte and apply shift

3e new VectorD(positionOfInputSample.X, positionOfInputSample.Y) | DeltaKappa;

31

32 double scalarSurfaceResponse = Math.Sqrt(ScalarEfficiency *

33 (refractiveIndexInFrontOfGrating.Re * InputRay.Direction.Z) /

34 (refractiveIndexBehindGrating.Re * diffractedDirection.Z)); Energy conservation Are there

35 outputRays[outputRays.Count - 1].EnergyConservationFactor *= scalarSurfaceResponse; .

36 errors in your
37 return outputRays.ToArray(); code?

A
\ =¥

M g Check Consistency | Validity: @

Cancel Help

}

Default global
parameters/variables

Global parameters
defined by user in
Global Parameters tab

23

Programmable Component: Comparing the Snippets

Source Code Editor

Source Code Global Parameters Snippet Help Advanced Settings

List« > outputRays = new List< >();

double currentWavelength = InputRay.Wavelength;
positionOfInputSample = InputRay.Position;
incomingDirection = InputRay.Direction;

refractiveIndexInFrontOfGrating =
RayBundleInformation.MediumOfBundle.BaseMaterial.GetComplexRefractiveIndex(
InputRay.Wavelength,
SystemTemperature,
SystemPressure);

| Snippet Body | Main Function

refractiveIndexBehindGrating = refractiveIndexInFrontQ

diffractedDirection = VL_Propagations.Ca
incomingDirection,
refractiveIndexInFrontOfGrating,
refractiveIndexBehindGrati
DiffractionOrder,
Period,

ttedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(
ctionOfCurrentMember,
IndexInFrontOfGrating,

iveIndexBehindGrating,
Diffracti

ionOrder,
Period,
wavelengthOfMember);
currentMember.CentralDirection = diffractedDirection;

currentMember *= .Sqrt(ScalarEfficiency);

hfsReturn[memberIndex] = currentMember;

return hfsReturn;

Check Consistency Validity

tOutputChannel.GetComplexRefractiveIndex(

cerial.GetComplexRefractiveIlndex

Cancel

Help

Variables need to be declared
separately and independently
in both snippets.

It would even be possible to
use different nomenclature!

It is the programmer’s
responsibility to ensure that
the code functions in an
equivalent manner in both
snippets.

Of all the global parameters
(including those defined by the
user) only one is snippet-
dependent: the one
corresponding to light
representation (InputField <>
RayTracing Result)

24

Programmable Component: Using Your Snippet

In the Bounding Box tab
you can modify the

Edit Custom Ideal Grating

dimensions of said
Bounding Box

In the
Geometry/Channels
menu you can control
some aspects of the
coordinate system, and
include additional output
channels for your
implementation

You can modify the value

of the global parameters — |

you defined here

Component Specification

1@

Structure /
Function

-] -
==
=
—Ld—

Propagation
Channels

—Houmsing Box
Input Field Preparation ffor Field Tracing)

x |

Relative Position of Field to Posttion of InpR Transface H -
(®) Keep Stored in the Field's Coordinate System
(O Resolve via Zero Padding
Algorithms
Input Transface / Edit Validity: (V]
Snippet for Equidistant Field Data Z Edit | Validity @
Snippet for Non-Equidistant Field and Ray Data validity: @
Parameters
DiffractionOrder] 1B | of:
Period [750nm| | 1m|
ScalarEfficiency ’ 100 %
\ ri

For the equidistant field
snippet, this controls with
what mechanism any
eventual overall position
shift of the field will be
handled: via padding
(increases sampling
effort) or via coordinate
system.

Modify your snippets by

- clicking on Edit

Snippet Help

Custom ldeal Grating

Version: 1.0
Last Modified: Monday, November 19, 2018

PARAMETER

This Programmable Component replicates the behaviour of an idealized grating.
The user can manually fix the period of the grating, the diffraction order they wish
to see, and the scalar efficiency corresponding to that order. It is assumed that
the embedding medium is the same on both sides of the grating.

DESCRIPTION

DiffractionOrder The index of the diffraction order that the user wishes to see.

Period

The two-dimensional period of the grating.

. The scalar efficiency assigned to the order of interest (as
ScalarEfficlency defined by the parameter DiffractionOrder).

Close

25

Save the Custom Component to the Catalog

#

Geometry /
Channels

Structure /
Function

Edit Programmable Component

Bounding Box Component Specification

Input Field Preparation ffor Field Tracing)
Relative Position of Field to Position of Input Transface
(® Keep Stored in the Field's Coordinate System

(O Resolve via Zero Padding

Algorithms

Input Transface
Snippet for Equidistant Field Data

Snippet for Non-Equidistant Field and Ray Data

Parameters

/7 Edit Validity: @

Validity: @

/7 Edit Validity: @

Ame and

Categories

Categories

Pro grammable Component

Check

DiffractionOrder l

1

My Components

Period]

750 nm‘

ScalarEfficiency

i Cancel Help

Cancel

X

Help

26

Test the Code!

Main Function (Equidistant)

// Generate output (by copying input):
HarmonicFieldsSet hfsReturn = new HarmonicFieldsSet(InputField);

// Run loop through all the members of the input:
for (int memberIndex = ©; memberIndex < hfsReturn.Count; memberIndex++)
{
// Extract the individual member (Complex Amplitude):
ComplexAmplitude currentMember = hfsReturn[memberIndex];

// Read in the wavelength of the member:
double wavelengthOfMember = currentMember.Wavelength;

// Read in the incoming direction of the member:
Vector3D inputDirectionOfCurrentMember = currentMember.CentralDirection;

// Read in the refractive index of the medium in front of the grating:

Complex refractiveIndexInFrontOfGrating = currentMember.EmbeddingMedium.BaseMaterial.GetComplexRefractiveIndex(
wavelengthOfMember,
SystemTemperature,
SystemPressure);

// Continued in next slide.

27

Test the Code!

Main Function (Equidistant)

// Continued from last slide.

// Read in the refractive index in the medium behind the grating:

Complex refractiveIndexBehindGrating = MaterialAtOutputChannel.GetComplexRefractiveIndex(
wavelengthOfMember,
SystemTemperature,
SystemPressure);

// Compute the outgoing direction of the diffracted order in question:
Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(
inputDirectionOfCurrentMember,
refractiveIndexInFrontOfGrating,
refractiveIndexBehindGrating,
DiffractionOrder,
Period,
wavelengthOfMember);

// Assign direction to corresponding member:
currentMember.CentralDirection = diffractedDirection;

// Apply efficiency, as provided by user in global parameters:
currentMember *= Math.Sqrt(ScalarEfficiency);

// Continued in next slide.

28

Test the Code!

Main Function (Equidistant)

// Continued from last slide.

// Re-insert member in alloted place:
hfsReturn[memberIndex] = currentMember;

}

// Deliver result:
return hfsReturn;

29

Test the Code!

Main Function (Non-Equidistant & Rays)

// Declare output:
List<RayInformation> outputRays = new List<RayInformation>();

// Read in wavelength of current sample:
double currentWavelength = InputRay.Wavelength;

// Read in position and direction of current incoming sample:
Vector3D positionOfInputSample = InputRay.Position;
Vector3D incomingDirection = InputRay.Direction;

// Read refractive index in front of grating:

Complex refractiveIndexInFrontOfGrating =
RayBundleInformation.MediumOfBundle.BaseMaterial.GetComplexRefractiveIndex(
InputRay.Wavelength,

SystemTemperature,
SystemPressure);

// Read refractive index behind grating (single embedding medium):
Complex refractiveIndexBehindGrating = refractiveIndexInFrontOfGrating;

// Continued in next slide.

30

Test the Code!

Main Function (Non-Equidistant & Rays)

// Continued from last slide.

// Compute the outgoing direction of the diffraction order:
Vector3D diffractedDirection = VL_Propagations.CalculateDiffractedDirectionTransmission(
incomingDirection,
refractiveIndexInFrontOfGrating,
refractiveIndexBehindGrating,
DiffractionOrder,
Period,
currentWavelength);

// Include sample in output and assign direction to corresponding member:
outputRays.Add(new RayInformation(InputRay));
outputRays[outputRays.Count - 1].Direction = diffractedDirection;

// Adjust phase:
VectorD DeltaKappa = new VectorD(@, 0);
DeltaKappa.X = 2.0 * Math.PI * DiffractionOrder.X / Period.X;
DeltaKappa.Y = 2.0 * Math.PI * DiffractionOrder.Y / Period.Y;
outputRays[outputRays.Count - 1].AbsolutePhase +=
new VectorD(positionOfInputSample.X, positionOfInputSample.Y) | DeltaKappa;

// Continued in next slide.

31

Test the Code!

Main Function (Non-Equidistant & Rays)

// Continued from last slide.

// Account for energy conservation:

double scalarSurfaceResponse = Math.Sqrt(ScalarEfficiency *
(refractiveIndexInFrontOfGrating.Re * InputRay.Direction.z) /
(refractiveIndexBehindGrating.Re * diffractedDirection.z));

outputRays[outputRays.Count - 1].EnergyConservationFactor *= scalarSurfaceResponse;

// Deliver result:
return outputRays.ToArray();

32

Document Information

title

document code
version

toolbox(es)

VL version used for

How to Work with the Programmable Component and Example (ldeal

Grating)
CZT.0102

1.0

Starter Toolbox

: : 7.4.0.49
simulations
category Feature Use Case
further reading
33 www.LightTrans.com

	How to Work with the Programmable Component and Example (Ideal Grating)
	Abstract
	Where to Find the Programmable Component: Catalog
	Where to Find the Programmable Component: Optical Setup
	A Note on the Light Representation
	A Note on the Light Representation
	Writing the Code: Input Transface
	Writing the Code: Input Transface
	Writing the Code: Equidistant Field Data
	Writing the Code: Equidistant Field Data
	Writing the Code: Non-Equidistant Field and Ray Data
	Bounding Box Configuration
	Channel Definition
	Output
	Programming an Ideal Grating
	Ideal Grating
	Where to Find the Programmable Component: Catalog
	Where to Find the Programmable Component: Optical Setup
	Programmable Component: Global Parameters
	Programmable Component: Snippet Help
	Programmable Component: Snippet Help
	Programmable Component: Writing the Code (1)
	Programmable Component: Writing the Code (2)
	Programmable Component: Comparing the Snippets
	Programmable Component: Using Your Snippet
	Save the Custom Component to the Catalog
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Document Information

