
Programmable Dispersion Function

Abstract

The accurate definition of the optical parameters of materials, such as the refractive index, is a necessity for the modeling of any optical system. One handy option to specify the wavelength-dependent index of refraction are so-called dispersion formulas, which typically provide the data over a large spectral range just by defining a manageable number of coefficients. VirtualLab Fusion is shipped with a wide selection of commonly used dispersion formulars (e.g. Sellmeier, Cauchy), but also allows for an easy programming of additional types. In this document, the programming of a dispersion formula is shown at the example of the glass GOST BK9 by applying the Reznik definition.

Definition of Materials by Dispersion Formulas n(λ)

Example: Reznik Dispersion Formula n(\lambda)

Definition of Reznik formula:

$$n(\lambda) = c_2 + c_4\nu + c_6\nu^2 + c_8\nu^3 + c_{10}\nu^4 + c_3\mu + c_5\mu^2 + c_7\mu^3 + c_9\mu^4 + c_{11}\mu^5$$

with:

$$\nu = \frac{\lambda^2 - \lambda_{av}}{\Delta \lambda}$$
 and $\mu = \frac{L - L_{av}}{\Delta L}$

and:

$$L = \frac{1}{\lambda^2 - c_1}, L_{\min} = \frac{1}{\lambda_{\min}^2 - c_1}, L_{\max} = \frac{1}{\lambda_{\max}^2 - c_1}, L_{av} = \frac{L_{\max} + L_{\min}}{2}, \Delta L = \frac{L_{\min} - L_{\max}}{2}$$

and:

$$\lambda_{av} = \frac{\lambda_{max} + \lambda_{min}}{2}$$
, $\Delta \lambda = \frac{\lambda_{max} - \lambda_{min}}{2}$

Example: Reznik Dispersion Formula n(λ)

Usable Vacuum Wavelength Range 🧵

🕼 🎲 🚽 🛛 Validity: 🗸

0

10 pm to

Cancel

Ok

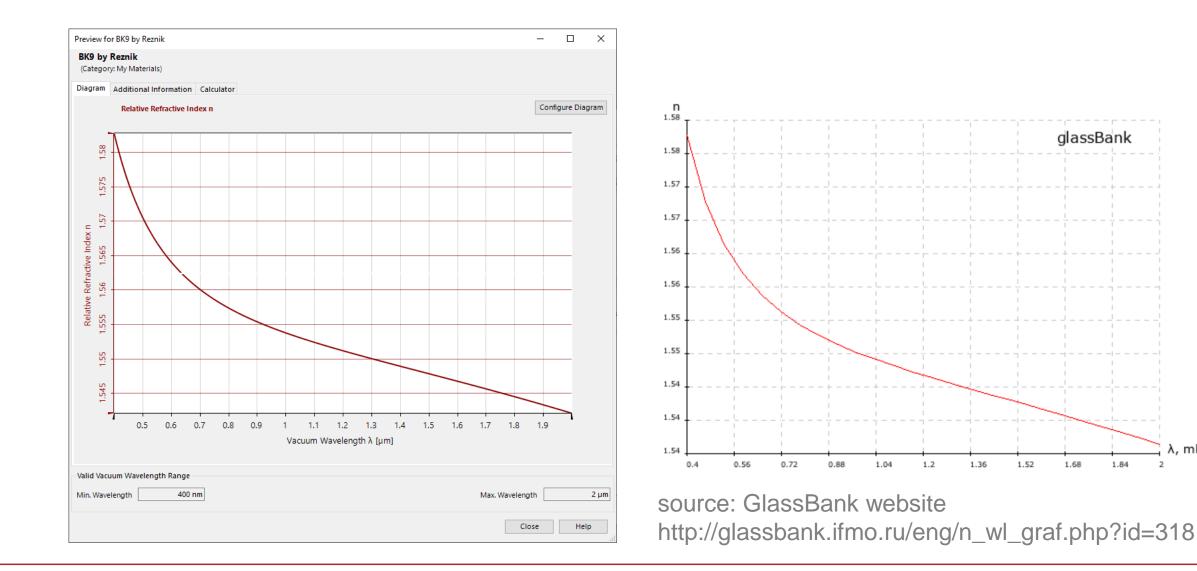
100 µm

Help

Material Data	X Source Code Editor	— D >
Interial Name Imported n-k-Data Material	Source Code Global Parameters Snippet Help Advanced Settings	
laterial Name Imported n-k-Data Material	1 Preset using directives	MinimumWavelength [doul
efractive Index Absorption Coefficient Additional Information Temperature Data	27	Wavelength [double] Temperature [double]
Define Refractive Index by	28 29 #endregion	GasPressure [double]
Dispersion Formulas	30	C2 [double] C3 [double]
Programmable v n =	31 ⊟ public class VLModule : ISnippetDouble_Double_Wavelength_Double_Temperature_Double_Pressure {	C4 [double]
calc(lambda)	33 🛱 Global Parameters	C5 [double] C6 [double]
Sampled Dispersion	51 52 🖯 public double GetData(double Wavelength, double Temperature, double GasPressure) {	C7 [double] C8 [double]
○ Constant	53	C9 [double] C10 [double]
Data	54 d #region Main method	C11 [double]
Relative to Reference Material	55 56 //rescaling wavelength to μm	
	57 double wavelength = Wavelength * 1e6;	
Definition	58 double maximumWavelength = MaximumWavelength * 1e6; 59 double minimumWavelength = MinimumWavelength * 1e6;	
	60	
🥖 Edit Validity: 🗹	61 //defining helping variables	1
	62 double L = 1 / (Math.Pow(wavelength, 2) - C1);	
Parameters	63 double Lmin = 1 / (Math.Pow(minimumWavelength, 2) - C1); 64 double Lmax = 1 / (Math.Pow(maximumWavelength, 2) - C1);	
	65 double L av = (Lmax + Lmin) / 2;	
DispersionData 🥒 Edit	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	67	
UnitScaleFactorWavelength 1 nm	68 double Lambda av = (Math.Pow(maximumWavelength, 2) + Math.Pow(minimumWavelength, 2)) / 2;	
	69 double DeltaLambda = (Math.Pow(maximumWavelength, 2) - Math.Pow(minimumWavelength, 2)) / 2;	
	71 double mu = (L - L av) / DeltaL;	
	72 double nu = (Math.Pow(wavelength, 2) - Lambda av) / DeltaLambda;	
	74 //calculation of refractive index	
2	75 double refractiveIndex = C2 + C4 * nu + C6 * Math.Pow(nu, 2) + C8 * Math.Pow(nu, 3) + C10 * Math.Pow(nu, 4)	
🕡 Help	+ C3 * mu + C5 * Math.Pow(mu, 2) + C7 * Math.Pow(mu, 3) + C9 * Math.Pow(mu, 4) + C11	1 * Math.Pow(mu, 5);
		· · · · · · · · · · · · · · · · · · ·
Domain of Definition	The Check Consistency Validity: 🔏 🚹	OK Cancel Help

In the Source Code Editor local and global variables can be defined (e.g. for the coefficients) and it enables the definition of the desired dispersion formula.

GOST BK9 with Reznik Dispersion Formula


Data for BK9:

- c₁=0.028
- c₂=1.56328
- c₃=0.0188168
- c₄=-0.0925687
- c₅=-0.00111742
- c₆=-0.0000432504
- c₇=0.000167343
- c₈=0
- c₉=0
- c₁₀=0
- c₁₁=0

source: GlassBank website http://glassbank.ifmo.ru/eng/prop.php?id=318

Edit Material Data			×	
Material Name	BK9 by Reznik			
Refractive Index	Absorption Coefficient	Additional Information	Temperature Data	
Define Refract	ive Index by			
Dispersion	Formulas			
Programmable \checkmark		n =	-hd-)	
Sampled Dispersion				
◯ Constant				
Data				
Relative to	Reference Material		Set	
Definition				
🖉 Edit			Validity: 🕑	
Parameters				
C1			0.028	
C2			1.56328	
C3			0.0188168	
C4			-0.00925687	
C5			-0.00111742	
C6			-0.000432504	
			¥	
Domain of Det	finition			
Vacuum Wave	elength Range	365.01 nm	to 2.6 µm	
Usable Va	acuum Wavelength Range	i 365.01 r	nm to 2.6 µm	
Q	s 🎢 🗸 Validity: 🕑	Ok	Cancel Help	

Comparison for GOST BK9

glassBank

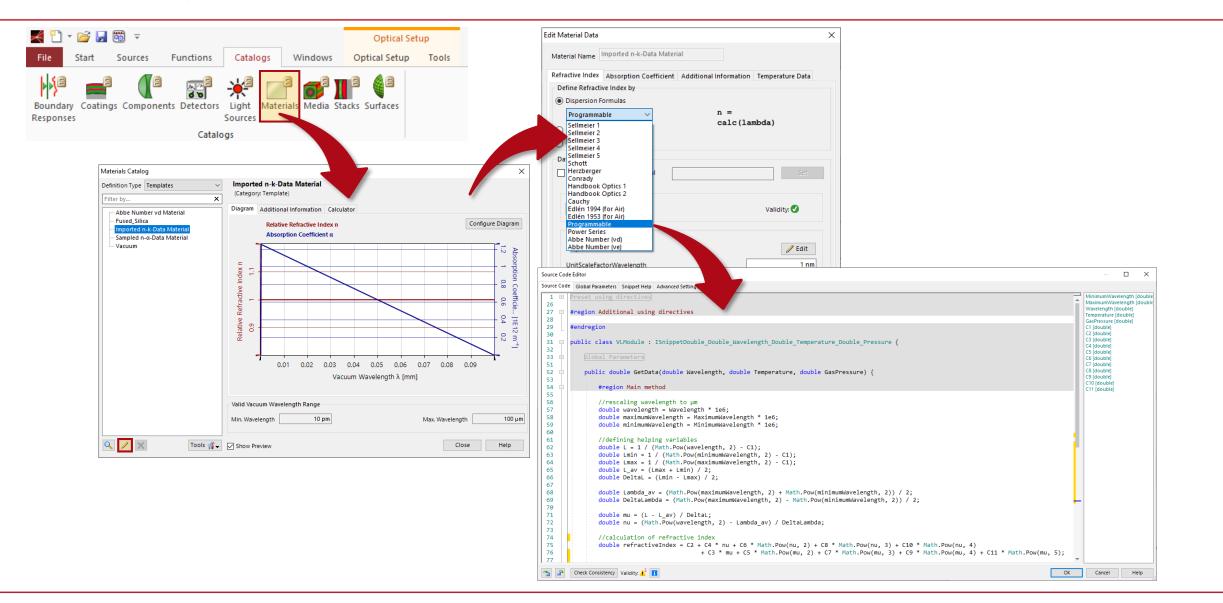
1.68

1.84

λ, mkm

2

title	Programmable Dispersion Function
document code	SWF.0026
document version	1.0
software edition	VirtualLab Fusion Basic
software version	2023.1 (Build 1.544)
category	Feature Use Case
further reading	Import of Material Data to VirtualLab Fusion



 SWF.0026, Materials, Media, Catalog, Medium Catalog, Material Catalog, Customization, Medium, Material, Dispersion, Dispersion Formula, Reznik, Reznik Dispersion, Reznik Dispersion Formula

Short Abstract

• This Use Case introduces the Programmable Medium and shows how to customize your own dispersion Formula.

Marketing Picture

