

Polarization Analyzer

Abstract

Wire-grid polarizers, which can create a linear polarization state of the transmitted light, are a common type of optical element in numerous applications. Due to their structure in the sub-wavelength range, a rigorous treatment of the light propagation is necessary. VirtualLab's polarization analyzer with its inbuilt RCWA enables the detailed analysis and optimization, not only of polarizers, but also anti-reflection structures and other types of gratings. It provides polarization-dependent information about reflected and/or transmitted diffraction orders, while the efficiency also can be analyzed with respect to the wavelength and/or incident angles.

Task Description

The topic of this document is the investigation of the polarization state of the diffracted orders of a grating using the *Polarization Analyzer*.

Polarization Analyzer in Grating Optical Setup

Edit Polarization Analyzer

Edi	it Polarization Analyzer	×
	Analyzed Output Transmission Reflection 	
ſ	Analyzed Orders Selection Strategy Order Range ~	
	X Y Minimum Order -3 ÷ -3 ÷ Maximum Order 3 ÷ 3 ÷	
P	Polarization Refers to Coordinate System of Grating Output Efficiency Ex-Direction Polarization Contrast	~
[Efficiency Ey-Direction Average Efficiency Vary Wavelength and/or Incident Angles	
	OK Cancel Help	

- This analyzer computes the summed efficiency (either in transmission or reflection) for two orthogonal polarization states per diffraction order of the defined structure.
- To this end, the grating configured in the grating component of the corresponding system is used.
- The summed efficiency is either calculated from all (propagating) orders or from a user-defined order range.

Edit Polarization Analyzer

Edit Polarization Analyzer X					
Analyzed Output					
Transmission	○ Reflection				
Analyzed Orders					
Selection Strategy	Order Range v				
	Х Ү				
Minimum Order	-3 -3 -3 -3				
Maximum Order	3 🗙 3 丈				
Polarization Refers to Output Efficiency Ex-Dire Efficiency Ey-Dire	p-s Coordinate System Coordinate System of Grating Coordinate System of Light Source p-s Coordinate System TE-TM Coordinate System TE-TM Coordinate System Coordinate System ction Average Efficiency nd/or Incident Angles State Stat				
	OK Cancel Help				

- The polarization states of the incident beam can be defined according to the following coordinate systems:
 - a. coordinate system of grating
 - b. coordinate system of light source
 - c. p-s coordinate system
 - d. TE-TM coordinate system

Polarization Directions

a. coordinate system of grating:

The Jones vector describes the electric field along the xand y-axes of the grating component, respectively. b. coordinate system of light source:

The Jones vector describes the electric field along the xand y-axes of the light source, respectively.

Polarization Directions with Non-Conical Incidence

c. p-s coordinate system:

d. TE-TE coordinate system:

The plane of incidence is defined by the normal vector to the grating surface and the direction vector of the incident light (in the non-conical case, also the grating vector is in this plane). The p-polarization state is parallel to the plane of incidence, while the s-polarization state is perpendicular to it. For TE/TM-polarization this is valid accordingly (TM: parallel, TE: perpendicular).

Polarization Directions with Conical Incidence

In the conical case, the incident direction of light is no longer inside the plane defined by surface normal and grating vector. Again, the polarization state of the impinging light is defined according to the plane of incidence, created by the direction of incidence and the normal vector of the grating surface.

Specification of Output Data

Edit Polarization Analyzer	×
Analyzed Output	
Transmission C Reflection	
Analyzed Orders	
Selection Strategy Order Range 🗸 🗸	
Minimum Order	
Polarization Refers to Coordinate System of Light Source	~
Output	
Efficiency Ex-Direction Polarization Contrast	
Efficiency Ey-Direction Average Efficiency	
Vary Wavelength and/or Incident Angles	
OK Cancel	Help

Besides the efficiency for both orthogonal polarization directions, this analyzer also provides other merit functions like the *Polarization Contrast* and *Average Efficiency*:

- Efficiency E_x -Direction I_x : the overall reflection/transmission efficiency for E_x -polarization.
- Efficiency E_y -Direction I_y : the overall reflection/transmission efficiency for E_y -polarization.
- Polarization Contrast: $P = I_x/I_y$.

• Average Efficiency:
$$A = \frac{I_x + I_y}{2}$$
.

Inbuilt Parameter Run Feature

re rolanzación Analyze	er -				
Analyzed Output					
O Transmission		Reflecti	on		
Analyzed Orders					
[
Selection Strategy	Order Ra	nge			\sim
		х		Y	
Minimum Order			3		3 1
					•
Maximum Order			3 🜩		3 🜩
olarization Refers to	TE-TN	A Coordinate Syste	m		
Output					
Output		un 🖂 De la viev			
Output	olarizatio	on 🔽 Polariza	ation Contr	rast	
Output Efficiency for TM-P Efficiency for TE-Po	Polarizatio Diarizatio	on 🔽 Polariza n 🗌 Average	ation Contr e Efficiency	rast	
Output Efficiency for TM-P Efficiency for TE-Po Vary Wavelength an	Polarizatio plarizatio d/or Incic	on 🔽 Polarizi n 🗌 Averagi ient Angles	ation Contr e Efficiency	rast	
Output Efficiency for TM-P Efficiency for TE-Po Vary Wavelength an Parameter	Polarizatio plarizatio d/or Incic Vary	on Polariza n Averago Jent Angles From	ation Contr e Efficiency To	rast Steps	Step Size
Output Efficiency for TM-P Fificiency for TE-Po Vary Wavelength an Parameter Wavelength	Polarizatio plarizatio d/or Incic Vary	on Polariza n Average dent Angles From 210.0655221 nm	ation Contr e Efficiency To 3.71 μm	Steps 2	Step Size 3.499934478 μ
Output Efficiency for TM-P Fificiency for TE-Po Vary Wavelength an Parameter Wavelength Spherical Angle Theta	Polarization Indexto Incident Vary	on Polariza n Average Jent Angles From 210.0655221 nm -360°	tion Contr e Efficiency To 3.71 μm 360°	Steps 2 2	Step Size 3.499934478 μ 720°
Output Efficiency for TM-P Fificiency for TE-Po Vary Wavelength an Parameter Wavelength Spherical Angle Theta Spherical Angle Phi	Polarizatio plarizatio d/or Incic Vary	on	tion Contr e Efficiency To 3.71 μm 360° 360°	Steps 2 2 2 2	Step Size 3.499934478 μι 720° 720°
Output Efficiency for TM-P Ffficiency for TE-Po Vary Wavelength an Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta	Polarizatio Darizatio Id/or Incic Vary	n Polariza n Average lent Angles From 210.0655221 nm -360° -360°	To 3.71 µm 360° 360° 360°	Steps 2 2 2 2 1	<mark>Step Size</mark> 3.499934478 µ 720° 720° 720°
Output Efficiency for TM-P Ffficiency for TE-Po Vary Wavelength an Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta	Polarizatic Darizatio Id/or Incic Vary	on Polariza n Average fent Angles From 210.0655221 nm -360° -360° -360°	To 3.71 μm 360° 360° 360°	Steps 2 2 2 1	Step Size 3.499934478 µ 720° 720° 720°
Output Efficiency for TM-P Fificiency for TE-Pc Vary Wavelength an Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Discrem	olarizatio olarizatio d/or Incic Vary Vary C	on Polariza n Average Jent Angles From 210.0655221 nm -360° -360°	To 3.71 µm 360° 360° 360°	Steps 2 2 2 1	Step Size 3.499934478 μ 720° 720°
Output Efficiency for TM-P Fificiency for TE-Po Vary Wavelength an Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Diagram	olarizatio olarizatio d/or Incic Vary Vary 	on Polariza n Average Jent Angles From 210.0655221 nm -360° -360° Minimu	To 3.71 µm 360° 360° 360°	Steps 2 2 2 1	Step Size 3.499934478 μ 720° 720° 720°
Output Efficiency for TM-P Fificiency for TE-Pe Vary Wavelength an Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Diagram Uniformity Error	Polarizatio Darizatio d/or Incic Vary	on Polariza n Average Jent Angles From 210.0655221 nm -360° -360° -360° Minimu	To 3.71 µm 360° 360° 360°	Steps 2 2 2 1	Step Size 3.499934478 μ 720° 720° 720°
Output Efficiency for TM-P Fificiency for TE-Po Vary Wavelength an Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Diagram Uniformity Error	Polarizatic Darizatio Id/or Incic Vary	on Polariza n Average Jent Angles From 210.0655221 nm -360° -360° -360° Minimu Maximu	To 3.71 µm 360° 360° 360° 360° 360°	Steps 2 2 2 1	Step Size 3.499934478 µ 720° 720° 720°

- The analyzer provides an inbuilt *Parameter Run* feature for analyzing the merit functions over a specified range of wavelengths and/or angles of incidence.
- In addition, some Advanced Outputs are available as well, e.g. a diagram that illustrates the variation of the chosen merit functions in the defined range of wavelengths or angles.
- By activating the corresponding checkbox (likewise for the minimum, maximum and uniformity error) the corresponding additional output(s) will be generated.

Inbuilt Parameter Run Feature

it Polarization Analyze	er 👘				
Analyzed Output					
 Transmission 		Reflecti	on		
Analyzed Orders					
Selection Strategy	Order Ra	nge			\sim
		v		v	
Minimum Order		×	.3 🜩		-3 🜩
Maximum Order			3 🜩		3 🜩
Polarization Refers to	TE-TN	1 Coordinate System	m		
Polarization Refers to TE-TM Coordinate System 🗸					
Output					
Output	olarizatio	n 🔽 Polariza	ation Contr	rast	
Output	Polarizatio	n 🔽 Polariza	ation Contr e Efficiency	rast	
Output Efficiency for TM-P Efficiency for TE-Pc Vary Wavelength and	olarizatio plarizatior d/or Incid	n 🗹 Polariza n 🗌 Average lent Angles	ation Contr e Efficiency	rast	
Output Efficiency for TM-P Efficiency for TE-Pc Vary Wavelength and Parameter	olarizatio olarizatior d/or Incid Vary	n Polariza Average ent Angles From	ation Contr e Efficiency To	rast Steps	Step Size
Output Cutput Efficiency for TM-P Efficiency for TE-Pc Vary Wavelength and Parameter Wavelength	Polarizatio plarizatior d/or Incid Vary	n Polariza h Average lent Angles From 210.0655221 nm	ation Contr e Efficiency To 3.71 µm	Steps 2	Step Size 3.499934478 µm
Output Cutput Efficiency for TM-P Fificiency for TE-Po Vary Wavelength and Parameter Wavelength Spherical Angle Theta	Polarizatio plarizatior d/or Incid Vary	n Polariza h Average lent Angles From 210.0655221 nm -360°	tion Contr e Efficiency To 3.71 μm 360°	Steps 2 2	Step Size 3.499934478 µm 720°
Output Cutput Efficiency for TM-P Fificiency for TE-Pc Vary Wavelength and Parameter Wavelength Spherical Angle Theta Spherical Angle Phi	olarizatio olarizatior d/or Incid Vary	n Polariza Average lent Angles From 210.0655221 nm -360° -360°	tion Contr Efficiency To 3.71 μm 360° 360°	Steps 2 2 2 2	<mark>Step Size</mark> 3.499934478 μm 720° 720 °
Output Cutput Efficiency for TM-P Fificiency for TE-Pc Vary Wavelength and Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta	Polarizatio Darizatior d/or Incid Vary	n Polariza Average ent Angles From 210.0655221 nm -360° -360°	tion Contr e Efficiency Το 3.71 μm 360° <u>360°</u> 360°	Steps 2 2 2 1	<mark>Step Size</mark> 3.499934478 μm 720° 720° 720°
Output Output Efficiency for TM-P Efficiency for TE-Pc Vary Wavelength and Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output	olarizatio blarizatior d/or Incid Vary	n Polariza Average lent Angles From 210.0655221 nm -360° -360°	tion Contr e Efficiency To 3.71 μm 360° 360° 360°	Steps 2 2 2 1	<mark>Step Size</mark> 3.499934478 µm 720° 720° 720°
Output Cutput Efficiency for TM-P Efficiency for TE-Pc Vary Wavelength and Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Diagram	olarizatio olarizatior d/or Incid Vary	n Polariza Average lent Angles From 210.0655221 nm -360° -360° -360° -360°	tion Contr e Efficiency To 3.71 μm 360° 360° 360°	Steps 2 2 2 1	Step Size 3.499934478 μm 720° 720° 720°
Output Output Efficiency for TM-P Efficiency for TE-Pc Vary Wavelength and Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Diagram Uniformity Error	Polarization plarization d/or Incid Vary	n Polariza Average lent Angles From 210.0655221 nm -360° -360° -360° () Minimu () Maximu	tion Contr e Efficiency To 3.71 μm 360° 360° 360° 360°	Steps 2 2 2 1	Step Size 3.499934478 µm 720° 720° 720°

Note for the definition of angle of incidence:

If you create a new *Polarization Analyzer* in your *Optical Setup*, the definition type of the angles in the *Polarization Analyzer* are set according to the *Orientation Definition Type* of the grating component in that *Optical Setup*, namely:

- For spherical angles, the angles Theta, Phi, and Zeta can be varied.
- For direction angles, the angle Zeta can be varied.
- For Cartesian angles, the angles Alpha, Beta, and Zeta can be varied.
- For Euler angles, the angles Psi, Theta, and Phi can be varied.

Example

Nanowire properties		
refractive index n	3.16	
Grating period	854nm	
modulation depth h	292nm	
relative slit width	10%	

Results

Ec							
	dit Polarization Analyze	er				:	×
	Analyzed Output						
	 Transmission 			Reflec	tion		
	Analyzed Orders						
	Selection Strategy	Order De				~	
	Selection Strategy	Ofder Ka	nge			•	
			Х		Y		
	Minimum Order		-3	÷		-3 🜩	
	Maximum Order		3	+		3 🜩	
			ſ				
1	Polarization Refers to	TE-TN	/ Coordin	ate Syst	em	``````````````````````````````````````	/
	Output						
	Efficiency for TM-F	Polarizatio	on 🗌	Polaria	zation Co	ntrast	
	Efficiency for TE-P	olarizatio	n [Averag	ge Efficien	0/	
	Van Wavelength ar			_	-	-y	
	IS I VALV VVAVELEI UTTAL	d/or Incid	lent Angle	-		- ,	
		d/or Incid	lent Angle	s		- ,	ĩ
	Parameter	vary	lent Angle From	s To	Steps	Step Size	Í
	Parameter Wavelength	nd/or Incid	ient Angle From 330 nm	s To 1 µm	Steps	Step Size 13.67346939 nm	Í
	Parameter Wavelength Spherical Angle Theta	Vary	lent Angle From 330 nm -360°	s Το 1 μm 360°	Steps 50 1	Step Size 13.67346939 nm 720°	
	Parameter Wavelength Spherical Angle Theta Spherical Angle Phi	Vary	From 330 nm -360° -360°	s Το 1 μm 360° 360°	Steps 50 1 1	Step Size 13.67346939 nm 720° 720°	
	Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta	Vary	ent Angle From 330 nm -360° -360° -360°	s To 1 μm 360° 360° 360°	Steps 50 1 1 1	Step Size 13.67346939 nm 720° 720° 720°	
	Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output	d/or Incid	ent Angle From 330 nm -360° -360° -360°	s Το 1 μm 360° 360°	Steps 50 1 1 1	Step Size 13.67346939 nm 720° 720° 720° 720°	
	Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output ☑ Diagram	d/or Incid	lent Angle From 330 nm -360° -360° -360°	s Το 1 μm 360° 360° 360°	Steps 50 1 1 1 1	Step Size 13.67346939 nm 720° 720° 720°	
	Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Diagram Uniformity Error	Vary	ent Angle From 330 nm -360° -360° -360° -260°	s Το 1 μm 360° 360° 360° 360° 360°	Steps 50 1 1 1 um num	Step Size 13.67346939 nm 720° 720° 720°	
	Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output i Diagram Uniformity Error	Vary	ent Angle From 330 nm -360° -360° -360° 	s To 1 μm 360° 360° 360° (Minim Maxim	Steps 50 1 1 1 um um	Step Size 13.67346939 nm 720° 720° 720°	
	Parameter Wavelength Spherical Angle Theta Spherical Angle Phi Angle Zeta Advanced Output Diagram Uniformity Error	d/or Incic	ent Angle From 330 nm -360° -360° -360° -260°	s To 1 µm 360° 360° 360° (Minim Maxim	Steps 50 1 1 1 1 1 um tum Cance	Step Size 13.67346939 nm 720° 720° 720° 4	

result of selected outputs:

Dete

"Polarization A

ctor	Sub - Detector	Result
	Maximum Efficiency for TM-Polarization	51.08584908 %
	Minimum Efficiency for TM-Polarization	2.138032929 %
	Uniformity Error of Efficiency for TM-Polarization	91.96588881 %
	Maximum Efficiency for TE-Polarization	36.26423096 %
	Minimum Efficiency for TE-Polarization	1.047370383 %
nalvaar" (# 900)	Uniformity Error of Efficiency for TE-Polarization	94.38581918 %
nalyzer (# 602)	Maximum Polarization Contrast	2.767529638
	Minimum Polarization Contrast	0.4953406617
	Uniformity Error of Polarization Contrast	69.63773511 %
	Maximum Average Efficiency	35.05599094 %
	Minimum Average Efficiency	1.592701656 %
ation	Uniformity Error of Average Efficiency	91.30827572 %

title	Polarization Analyzer
document code	GRT.0028
document version	1.0
software edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Feature Use Case
further reading	- Investigation of Polarization State of Diffraction Orders