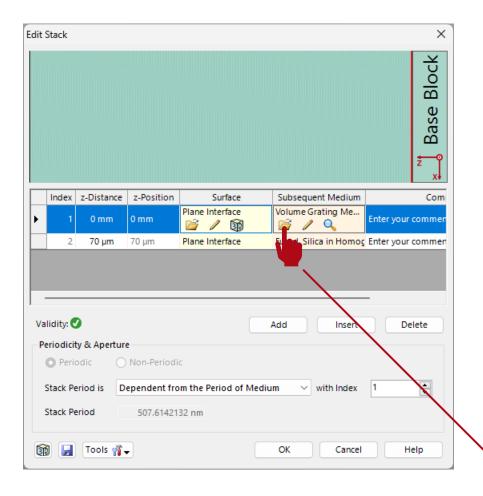
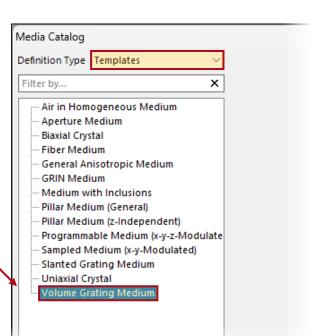
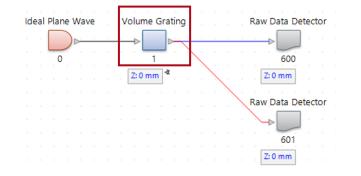

Holographically Generated Volume Grating

Abstract




Holographic generated volume gratings, with a thickness much larger than the wavelength, normally exhibit a narrow bandwidth for the particular designed wavelength and angle. Following the twobeam interference exposure process, a volume grating inside fused silica is generated and simulated with the rigorous Fourier modal method (FMM) in VirtualLab Fusion. Both the spectral and angular dependent reflection property of the grating are analyzed.

Holographic Volume Grating



The holographic volume grating is generated by a specialized medium defined between two plane interfaces. It allows to configure the modulations of the refractive index, which was e.g., generated by holographic exposure. It can be found via *Templates > Volume Grating Medium*.

Holographic Volume Grating

After adjusting the thickness and editing the view settings appropriately, the preview of the periodic grating structure can be seen.

Edit Stack	×
Edit View Settings Edit View Settings Index z-Distance z-Position Surface Subsequent Mediun 1 0 mm 0 mm Plane Interface Volume Grating Me 2 70 µm 70 µm Plane Interface Fused_Silica in Homoc Enter your	
Validity: Add Insert Periodicity & Aperture Periodic O Periodic Non-Periodic Stack Period is Dependent from the Period of Medium Stack Period 507.6142132 nm	Stad Base Block
Image: Solid Hall Hall Solid Hall Solid Hall Hall Solid Hall Solid Hall Hall Hall	Index z-Distance z-Position Surface Subsequent Medium Com 1 0 mm 0 mm Plane Interface Volume Grating Medii Enter your commer 2 1 μm 1 μm Plane Interface Fused_Silica in Hom Enter your commer

Construction of the Volume Grating Medium

- To describe the volume grating VirtualLab simulates the interference pattern of a certain number of impinging waves.
- First, a *Holographic Material* has to be chosen, that provides the initial index of refraction.
- Next, an interference pattern is constructed by calculating the local time-averaged energy density of an arbitrary number of *Plane Waves*.
- Lastly, this interference pattern is transferred into a refractive index modulation that represents the volume grating.

		ng Mediu								×
ic Pa	arameters	Scaling	Peri	odization	1					
Hold	ographic l	Material								
Nam	e Fused	I_Silica							Q	
Catalog Material										
	-									
	State	of Matter	S	olid					~	
nter	rferogram	Index	Modul	ation						
Rep	oresentatio	on of Dire	ection	Cartes	ian Angl	es	~			
۵	λ (vac.)	Weight	Dir.	α (vac.)	β (vac.)	α (mat.)	β (mat.)	α (mat., quant.)	β (mat., qua	:
1	640 nm	1	+	90°	90°	60°	0°	59.907°	0°	
2	640 nm	1	+	180°	180°	180°	180°	180°	180°	
		Inte	erferogr	am Inde		ion Simulate E				
_	opend Use k Spa			ive Index I e Refractiv				01	O Photonic Cr	rystals

Holographic Material

• The *Holographic Material* can be specified either using our extensive material library or by specifying the refractive index directly.

t Volume Gratin	g Medium						
asic Parameters	Scaling Pe	riodization					
– Holographic N	1aterial						
Name Non-D)ispersive Ma	terial (n=1)					_ Q
Defined by Co	onstant Refra	ctive Index					✓ 1
-	of Matter	Solid					
		20110					
Interferogram	Index Mod	ulation					
Representatio	n of Direction	n Cartesia	an Angles	~			
	n of Direction Weight Dir.		-		(mat.)	α (mat., quant.)	β (mat., qua

Basic Parameters Scaling Periodization Holographic Material Name Fused_Silica Catalog Material	 2
Name Fused_Silica	 ✓
LF5_Sthott LF5G19_Schott LF5G19_Schott LF5G19_Schott LF5G19_Schott LF5G19_Schott LF1_Schott LIF1_Schott LIF1_Schott N-BAF10_Schott N-BAF3_Schott N-BAF3_Schott N-BAF4_Schott N-BAK4_Schott N-BAK4_Schott	nformation Calculator effactive Index n In Coefficient α

Construction of the Volume Grating Medium

- To generate an interference pattern, user can specify weights, wavelengths and direction of an arbitrary number of plane waves.
- The locally averaged energy density is then calculated as

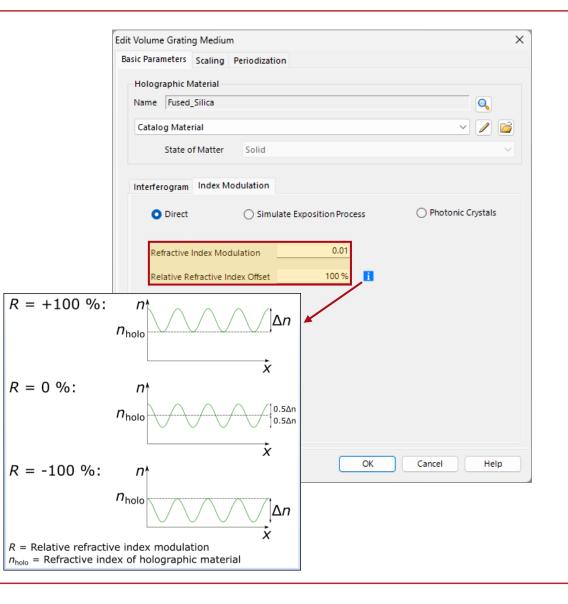
$$\bar{\omega}(x,y,z) = \epsilon_0 n_{\text{base}}^2 (\sum_n E_n e^{i\Phi_n(x,y,z)})^2$$

 $E_n = \sqrt{\frac{F_n}{\sum_n F_n} \frac{\omega_{max}}{\epsilon_0 n_{\text{base}}^2}}$

With F_n being the customizable weights.

- Here, $\omega_{\rm max}$ describes a weighting factor, which will be specified in the next section.

t Volume Gratii	ng Mediu	ım							×
sic Parameters	Scaling	Peri	odizatior	n					
Holographic	Material								
Name Fused	_Silica							<u> </u>	
Catalog Mate	erial							- 🖉 🖻	3
State	of Matter	s	olid						~
Interferogram Representatio				sian Angl	les	~			
Δ λ (vac.)	Weight	Dir.	α (vac.)	β (vac.)	α (mat.)	β (mat.)	α (mat., quant.)	β (mat., qua	
1 640 nm	1	+	90°	90°	60°	0°	59.907°	0°	
2 640 nm	1	+	180°	180°	180°	180°	180°	180°	
				Plane Wa /acuum W - Direction	/avelength	_	640 nm	Weight	
Append	Edit		Del	Cartes	an Angles	~	α	60°	
	ice Discre	tizatio		Defined	In O	Vacuum	 Holographi 	c Material	
Structure Peri									
-			292	Validity:	0	(ок	Cancel	Help


Refractive Index Modulation – Direct

 In this case the desired Refractive Index Modulation Δn and the Relative Refractive Index Offset R is defined by direct modulation mode. The refractive index n(x, y, z) at a certain position is then calculated via

 $n(x, y, z) = n_{\text{holo}} + \left(\frac{\bar{\omega}(x, y, z)}{\omega_{\text{max}}} \frac{R-1}{2}\right) \cdot \Delta n$

 w_{max} can be an arbitrary value, as it cancels out in this case. n_{holo} is the refractive index of the holographic material.

- For R = +100%, the refractive index modulation is added to n_{holo} , for R = -100%, it is subtracted from n_{holo} and for intermediate values it is something in between. In particular, the case R = 0 means that the refractive indices range from $n_{holo} - \frac{\Delta n}{2}$ to $n_{holo} + \frac{\Delta n}{2}$.
- The effect of the Relative Refractive Index Offset R is shown in the following experiment (Diffraction Efficiency vs. Wavelength)

Refractive Index Modulation – Simulate Exposition Process

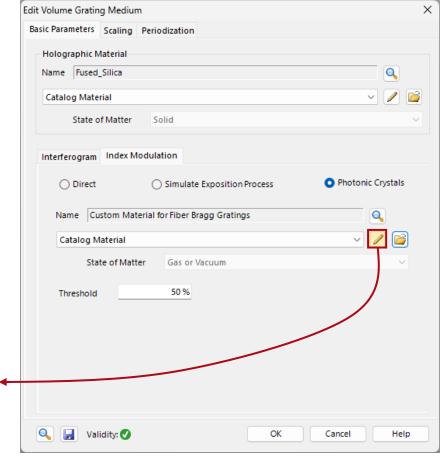
• There is also the option to simulate an exposition process, in this case the weighting factor is defined by the *Power Density* P and the *Exposure Time* t_{exp} as

 $\bar{\omega}(x, y, z) = P \cdot t_{\exp}$

• For the actual refractive index modulation three options are available which are as following:

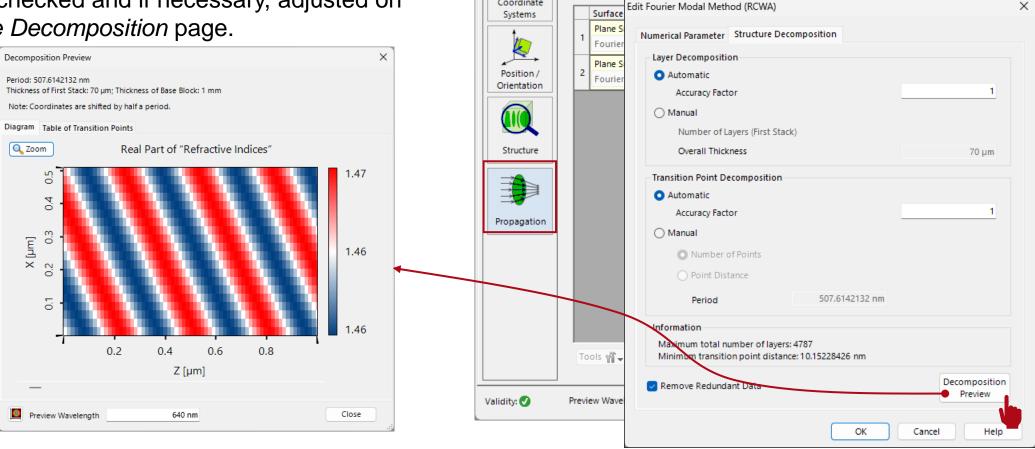
DOSE TO REFRACTIVE EQUATION INDEX MODULATION

PARAMETERS


Linear	$n(x,y,z) = n_{holo} + l\overline{w}(x,y,z)$	1: Linear Factor
Quadratic	$n(x,y,z) = n_{holo} + l\overline{w}(x,y,z) + p\overline{w}(x,y,z)^2$	1: Linear Factor p: Squared Factor
Asymptotic	$n(x,y,z) = n_{holo} + \Delta n - \frac{\Delta n}{1 + (\overline{w}(x,y,z)/w_0)^{\gamma}}$	Δn : Refractive Index Modulation w_0 : Average Energy Density γ : Modulation Exponent \hookrightarrow Fig. 787

Edit Volume Gratir	ng Mediun	n	×
Basic Parameters	Scaling	Periodization	
	_Silica rial of Matter	Solid	
Interferogram			e Exposition Process O Photonic Crystals
- Exposition Power Den	sity	1 W/m ²	Material Response Dose to Refractive Index Modulation Refractive Index Modulation 0.03
Exposure T	ime	1 s	Average Energy Density 0.5 J/m² Modulation Exponent 3
Relative R	efractive Ir	dex Offset	100 % i Linear Quadratic Asymptotic
🔍 🛃 Va	lidity: 🕑		OK Cancel Help

Refractive Index Modulation – Photonic Crystal


• When using the *Photonic Crystal* options, users can specify a second material using or importing one from our extensive data base. VirtualLab will then assume the base material if the local averaged energy density of the interference pattern is below the specified threshold and the second material when it is above.

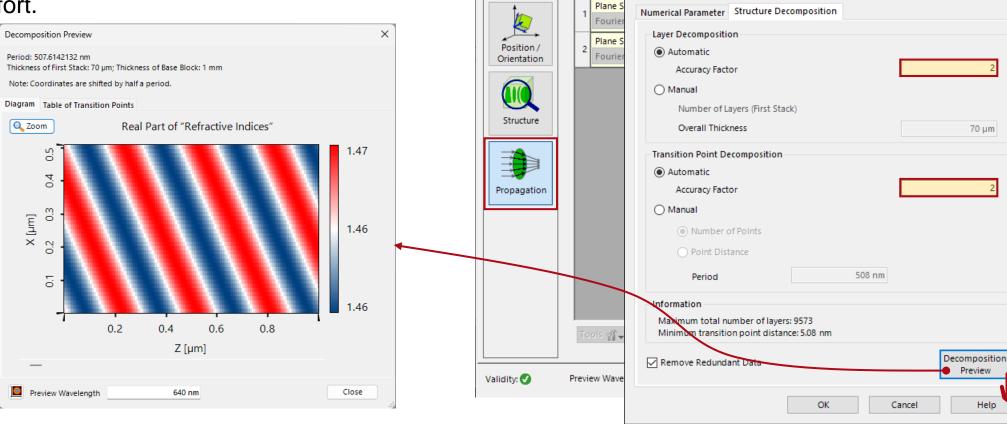
Materi	al Name Cus	tom Materia	l for Fiber Bragg Gra	ting			
Refrac	tive Index Ab	sorption A	Additional Informatio	n Temperatu	ire Data		
Defi	ne Refractive l	ndex by					
O D	ispersion Form	ulas	1	.00031			
	Edlén 1994 (for Sellmeier 1	rAir) ∨	1	.00027	$\overline{}$		
	ellmeier 2 ellmeier 3 ellmeier 4 ellmeier 5 ichott ferzberger			7	(→		
	Conrady Jandbook Opt Jandbook Opt Cauchy Idlén 1994 (for Idlén 1953 (for Programmable Power Series Nobe Number (Nobe Number (tics 2 Air) Air) Vd)	ter Vapor (applies 550 nm)			O Pa	

Advanced Options & Information

For the modeling, the modulation of the index has to be decomposed, what is done automatically. This can be checked and if necessary, adjusted on the Structure Decomposition page.

Coordinate

Edit General Grating Component (Volume Grating)


Component Propagation Fourier Modal Method

 \sim

🥒 Edit

Advanced Options & Information

If the numbers of layers and transition points are increased (e.g., by a factor of 2), the discretization becomes smoother, at the expense of an increased numerical effort.

Edit General Grating Component

Interface

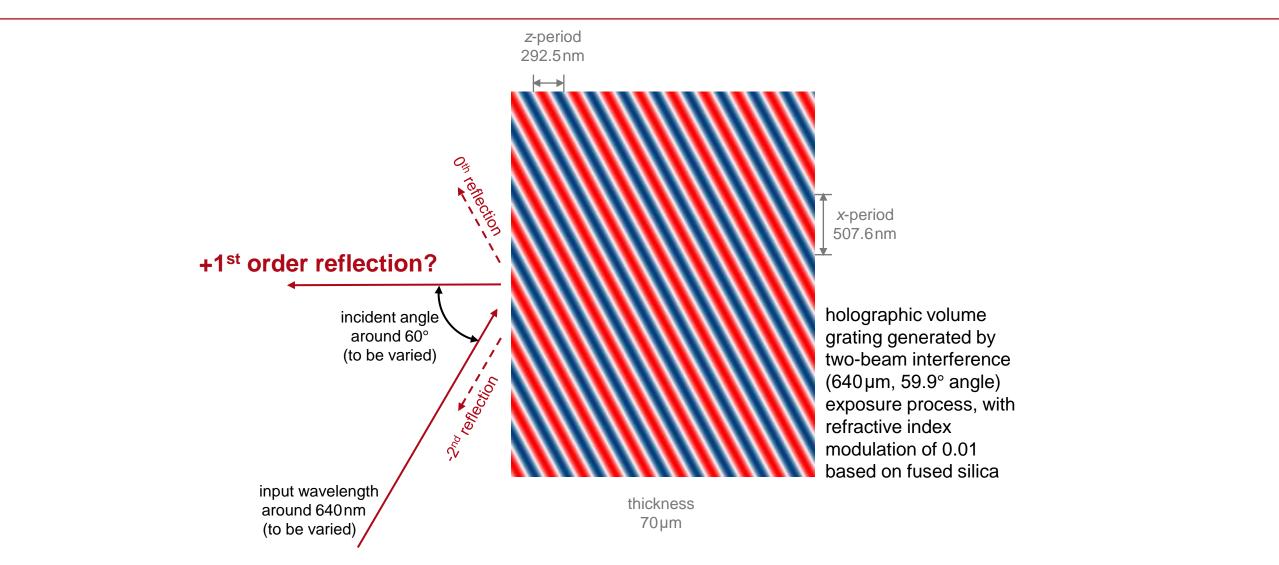
Ð

Coordinate

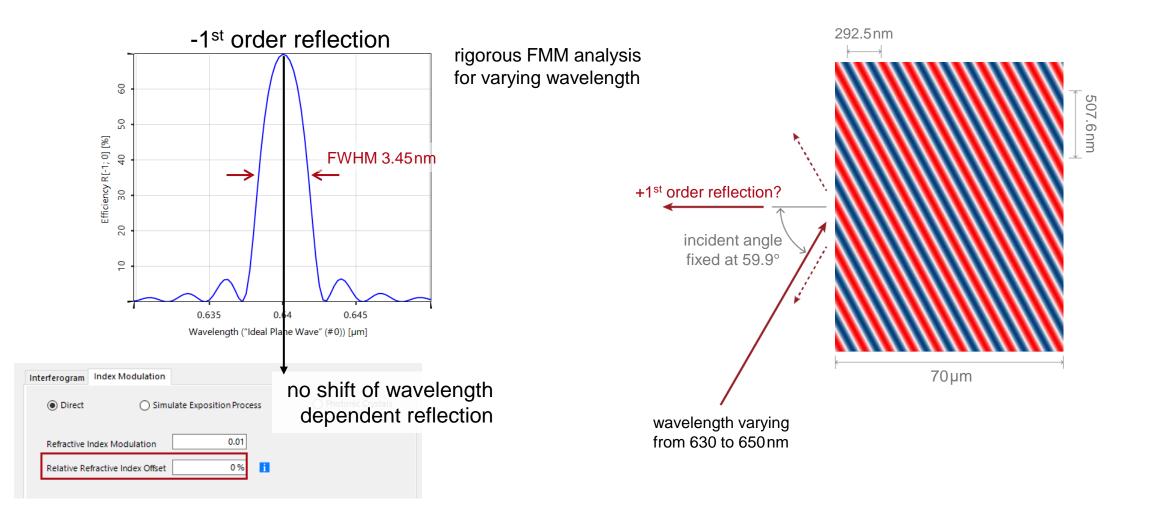
Systems

Component Propagation Fourier Modal Method

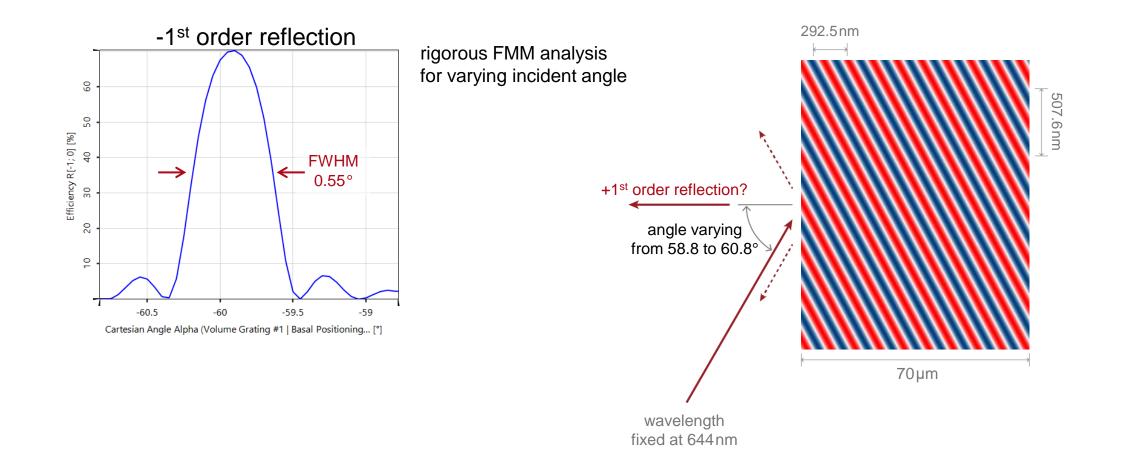
dit Fourier Modal Method (RCWA)


×

Help


Edit

Examples


Modeling Task

Diffraction Efficiency vs. Wavelength

Diffraction Efficiency vs. Angle of Incidence

title	Holographically Generated Volume Grating
document code	GRT.0003
document version	2.0
required packages	VirtualLab Fusion Advanced
software version	2024.1 (Build 1.134)
category	Feature Use Case
further reading	 <u>Configuration of Grating Structures by Using Special Media</u> <u>Grating Order Analyzer</u> <u>Modeling of Gratings within Optical System - Discussion at Examples</u>