

Grating Optimization in VirtualLab Fusion Using optiSLang

Abstract

Optimization of a modern optical system often involves a large amount of parameters. As an example, for the optimization of gratings, not only the geometrical paramters of the grating shall be considered, but also the desired incidence directions. That leads to a challenging task with greatly increased number of parameters. For such cases, VirtualLab Fusion provides an interface to the software optiSLang from Dynardo, so that different advanced optimization algorithms can be applied.

Interface of VirtualLab Fusion and optiSLang

VirtualLab Fusion is a flexible and customizable platform of modelling tools to simulate complex optical setups like e.g. coupling a set of plane waves into a lightguide.

optiSLang is a software platform of advanced tools for sensitivity analysis, multiobjective and multidisciplinary optimization, robustness evaluation, reliability analysis and robust design optimization.

The combination of both software platforms enables advanced grating structure designs for e.g. smart lightguide coupling

VirtualLab Fusion – Initialization of the Optical Setup

- Initial Setup
 - In general, each optical system defined in VirtualLab can be optimized using optiSLang.
 - For this example the optical system consists of a Plane Wave Source and the Lightguide Coupling Detector for periodic media.

- Lightguide Coupling Detection
 - The Lightguide Coupling Detector is a special tool to detect the efficiencies of a periodic structure regarding a specified angular incidence range.
 - The periodic structure can be defined or loaded from catalogs within the Edit Dialog of the detector.

🥰 9: Optical Setup Vie	ew #8 (D:\OneDrive\\01_Lightquide Coupling Detector.lpd)*
Biter by Gondinate Break Components Gondernets Camera Detector Detectors Analyzers	X Plane Wave Plane Wave Detector 600 X:0 m Y:0 m Z:0 m Ray Tracing System Analyzer 800
Crientation Orientation Detector Parameters	Snippet for Equidistant Field Data Snippet for Non-Equidistant Field and Ray Data Parameters Debugging
	SlantedGrating: "Example.0006_Slanted MediumBefore: "Air in Homogeneous Me MediumBehind: "Fused_Silica in Homog MediumBehind: "Fused_Silica in Homog MediumBehind: M
	Number of Resulting Physical Values (for Optimization)
	OK Cancel Help

- Lightguide Coupling Detection
 - For this example a slanted grating is used.

Filter by...

Light Sources
 Coordinate Break

ኛ 9: Optical Setup View #8 (D:\OneDrive\...\01_Lightquide Coupling Detector.lpd)*

x

-

- Lightguide Coupling Detection
 - The angular range of the incidence directions of the input source is specified within the Edit Dialog of the detector.
 - These are defined by minimum and maximum cartesian angles alpha and beta and their number of sampling points.

🥰 9: Optical Setup View	##8 (D:\OneDrive\\01_Lightguide Coupling Detector.lpd)*
Filter byX Image: Ught Sources Image: Coordinate Break Image: Components Image: Image: Use Sources Image: Use Sources <th>Plane Wave Plane Wave Detector 0 600 X: 0 m Y: 0 m Z: 0 m Ray Tracing System Analyzer 800 Bill</th>	Plane Wave Plane Wave Detector 0 600 X: 0 m Y: 0 m Z: 0 m Ray Tracing System Analyzer 800 Bill
Orientation Detector Parameters	Snippet for Equidistant Field Data
	OK Cancel Help

VirtualLab Fusion – Lightguide Coupling

- Lightguide Coupling Detection
 - From the detected efficiencies, the mean value and the uniformity contrast is calculated and provided in the Detector Results tab.
 - As a result the detector enables the evaluation of a periodic structure within a specified angular space.

Parameter	Value & Unit
Mean value	45.47%
Uniformity contrast	84.48%

VirtualLab Fusion – Export LPD to OPtiSLang

Export Folder Simulation Engine

Slant

12 •

Validity: 🕑

- Export LPD to optiSLang
 - − File → Export → Export to optiSLang Project

VirtualLab Fusion – Export LPD to optiSLang

- Export LPD to optiSLang
 - File → Export → Export to optiSLang
 Project
 - The LPD is exported by generating all files necessary for importing the optical setup to optiSLang.

parameters.xml	19.01.2018 09:42	XML-Datei	19 KB
results.xml	19.01.2018 09:42	XML-Datei	1 KB
💿 run_VirtualLab.bat	19.01.2018 09:42	Windows-Batchda	1 KB
📥 system.lpd	19.01.2018 09:42	Light Path Diagram	117 KB
			`

VirtualLab Fusion – Export LPD to optiSLang

- Export LPD to optiSLang
 - In the export dialog window
 - the parameter space can be defined including the variation range of the parameters
 - the export folder is chosen, where the files are saved
 - the simulation engine is specified, which is used for the analysis

mulat	ion Engine	Field Tr	acing 2nd Generation 🗸 🗸					
Slant						×	Show Only \	/aried Paramete
12.	' Object	Category	Parameter	Vary	Short Name	From	То	Original Valu
			Material in Front (Fused_Silica)		Constant Absorption Coefficient	0	1E+300	0
			Scaling x-Direction		Scaling x-Direction	1E-300	1E+300	1
			Scaling y-Direction		Scaling y-Direction	1E-300	1E+300	1
			Scaling z-Direction		Scaling z-Direction	1E-300	1E+300	1
	Characteristic		Period x-Direction		Period x-Direction	1 pm	1E+303 mm	453.24 nm
	Curve Detector	SlantedGr	Period y-Direction		Period y-Direction	1 pm	1E+303 mm	+inf mm
	#600		Period z-Direction		Period z-Direction	1 pm	1E+303 mm	+inf mm
			Material Behind (Air) Constant		Constant Absorption Coefficient	0	1E+300	0
			Fill Factor (Bottom)	\checkmark	Fill Factor (Bottom)	10 %	90 %	50 %
			z-Extension	\checkmark	z-Extension	50 nm	1.5 µm	400 nm
			Slant Angle		Slant Angle	0°	50°	40°

- Setting up the solver system
 - File → New project ...

- Setting up the solver system
 - Next, drag the Solver wizard to the Scenery window.
 - A dialog opens, where several Solver paradigm are listed.
 - The Solver paradigm VirtualLab has to be selected.

- Setting up the solver system
 - Then a file dialog opens, where the system.lpd generated by the VirtualLab export has to be opened.

Select project file						×
← → ✓ ↑ 🔒 « Daten (D:) → Works	Space_Local > Feature.XXXX_VirtualLab_Optimizat	tion_Using_OptiSLang	ע טֿ "Fea	ature.XXXX_Virtu	alLab_Opt	<i>р</i>
Organisieren 🔻 Neuer Ordner					•	?
💪 OneDrive 🔨	Name	Änderungsdatum	Тур	Größe		
tightTrans International UG		19.01.2018 12:36	Dateiordner			
Frank Wyrowski - Project.Huawei	🔃 ~\$Feature.XXXX_VirtualLab_Optimization	19.01.2018 09:13	Microsoft PowerP	1 KB		
Teamwebsite - Dokumente	🍀 19-01-2018 09-41-59.png	19.01.2018 09:43	IrfanView PNG File	44 KB		
	🍀 19-01-2018 09-44-00.png	19.01.2018 09:44	IrfanView PNG File	221 KB		
🟂 OneDrive - Personal	🔃 Feature.XXXX_VirtualLab_Optimization_U	19.01.2018 10:29	Microsoft PowerP	448 KB		
Dieser PC	Feature.XXXX_VirtualLab_Optimization_U	19.01.2018 09:40	Light Path Diagram	26 KB		
E Pilder	🗟 Optimization.opf	19.01.2018 12:36	optiSLang project	310 KB		
	Optimization.opf_autosave	19.01.2018 12:11	OPF_AUTOSAVE-D	295 KB		
Desktop	parameters.xml	19.01.2018 09:42	XML-Datei	19 KB		
Dokumente	results.xml	19.01.2018 09:42	XML-Datei	1 KB		
👆 Downloads	💿 run_VirtualLab.bat	19.01.2018 09:42	Windows-Batchda	1 KB		
👌 Musik	system.lpd	19.01.2018 09:42	Light Path Diagram	117 KB		
📕 Videos						
System SSD (C:)						
🚔 Daten (D:) 🗸 🗸						
Dateiname: system.lpc	1		~ All	files (*)		~
				Öffnen	Abbreche	n

- Parametric solver system
 - The parametric solver system consists of the corresponding VirtualLab file and two XML files containing the parameters and results to define the merit function.
 - Please save the project.

- Parametric solver system
 - Run the solver system to check it is working correctly and provides the expected results.

- Parametric solver system
 - Run the solver system to check it is working correctly and provides the expected results.
 - The parameters and the results can be checked by double-clicking on the Parametric solver system window in the Result designs tab.

🦉 Param	etric solver s	ystem - Parametric	: System						-	- 0	×
Paramete	er Criteria	a Other Resu	ult designs								
,	ld	Feasible	Duplicates	Status	Fill_Factor_Bottom_	Slant_Angle	z_Extension	Value_1_Mean	Value_2_Unif	ormity_Error	
1 0.1		true		Succeeded	0.5	0.698132	4e-07	0.416991	0.811325		
Selection	node: 🖲 De	signs 🔿 Columns	O Individual Cells				Instant vis	sualization			
Show	additional opt	ions						OK	Cance	I Ap	ply

- Parametric solver system
 - optiSLang enables the possibility to optimize the optical system using multiple target functions.
 - This can be defined in the Criteria tab of the Parametric solver system configuration.

Parametric solver sys	em - Parametric System					
Parameter Criteria	Other Result designs					
Parameter			Responses			
Name		Value	Name	Value		
Fill_Factor_Bottom_	0.5		Value_2_Uniformity_Error 0.811325			
z_Extension	4e-07		Value_1_Mean 0.416991			
Slant_Angle	0.698132					
Criteria						
Name Type Expre	ssion Criterion Limit		Evaluated expression			
Create new						
f(x) Varial	ke.	Objective	Constraint	Limit state		
Prefer criteria from slo	t			Instant visualization Impo	rt criteria from s	ystem 🔻
Show additional option	s			OK	Cancel	Apply

- Parametric solver system
 - The first target function is defined by drag the Uniformity Contrast to the Objective Minimize criteria.
 - As a consequence the optimization algorithm tries to minimize the uniformity contrast as best as possible.

rameter							Responses						
Name			Va	lue			Na	ime			Value		
ill_Factor_Bottom_	0.5						Value_2_Un	iformity_Error	0.811325				
Extension	4e-07						Value_1_Me	ean	0.416991	1			
lant_Angle	0.698132												
													_
ria													-
eria													
eria Nom	•	Type	Expression	Critorios	- 1 insit	_			Evaluated expr	ession			
eria Nem obj_Value_2_	Uniformity_Error	Type Objective Value	2_Uniformit	y_Error MIN	0.81	1325			Evaluated expr	ession			
eria obj_Value2	Uniformity_Error	Type Objective Value	2_Uniformit	y_Error MIN	0.81	1325			Evaluated expr	ession			
eria Norro obj_Value_2_ W	_ _Uniformity_Error	Type Objective Value	2_Uniformit	y_Error MIN	0.81	1325			Evaluated expr	ession			
eria obj_Value_2_	Uniformity_Error	Type Objective Value	Euprocesion 2Uniformit	y_Error MIN	0.81	1325			Evaluated expr	ession			
veria voj_Value_2_ ew	Uniformity_Error	Type Objective Value	2Uniformit	y_Error MIN	0.81	1325			Evaluated expr	ession			
obj_Value2	Uniformity_Error	Objective Value	Expression _2_Uniformit	y_Error MIN	0.81	1325			Evaluated expr	ession			
eria	Uniformity_Error	Objective Value	Expression _2_Uniformit	y_Error MIN	0.81	1325			Evaluated expr	ession			
teria	Uniformity_Error	Objective Value	Uniformit	y_Error MIN	0.81	1325	-1		Evaluated expr	ession			
obj_Value_2_ w	Uniformity_Error	Objective Value	_2_Uniformit	y_Error MIN	0.81	1325		Constraint	Evaluated expr	ession	limit state	 	
obj_Value_2_ w Create new	Uniformity_Error	Objective Value	_2_Uniformit		0.81	1325		Constraint	Evaluated expr	ession	Limit state	 	

- Parametric solver system
 - The second target function is defined by drag the Mean to the Objective Maximize criteria.
 - As a consequence the optimization algorithm tries to maximize the mean efficiency as best as possible.
 - This specification is called a multiple target optimization.

							Responses	
Name Fill_Factor_Bottom	0.5		Valu	le			Name Value_2_Uniformity_Error	Value 0.811325
z_Extension	4e-07						Value_1_Mean	0.416991
Slant_Angle	0.698132							
Criteria								
Nan 👎 obi Value 2	ie Uniformity Error	Type Obiective Value	Expression 2 Uniformity	Criterion Error MIN	Limit	1.811325		Evalutionexpression
obj_Value1_	_Mean	Objective Value_	_1Mean	MAX		0.416991		
new						1		
			![1 <mark>-</mark>			
Create new				√ ↓		√ ≜ V	Constraint	Limit state
□ Create new	able		!i	Minimize	!L	Maximize	j i	iii

- Optimization wizard
 - As next step the Optimization wizard is applied to the solver system by Drag & Drop.

- Optimization wizard
 - First, the varied system parameters are presented including their specified value range.
 - Furthermore, optiSLang provides a visualization of the value range including a mark for the initial value.
 - Then click on Next.

) 0	ptimization Wizard										×
Pa	rametrize Inputs Parametrize the inputs										≜ ∿
Γ	Name	Parameter type	Reference value	Constant	Value type	Resolution	Ra	inge	Range p	lot	
1	Fill_Factor_Bottom_	Optimization	0.5		REAL	Continuous	0.1	0.9			
2	z_Extension	Optimization	4e-07		REAL	Continuous	5e-08	1.5e-06			
3	Slant_Angle	Optimization	0.698132		REAL	Continuous	0	0.872665			
								Ir	mport paran	neter	•
						[Next >	Са	ncel	H	lelp

- Optimization wizard
 - Second, the criteria for the optimization can be specified, if not already done in the Parametric solver system.
 - There is also the possibility to import the criteria from other documents.
 - Then, click on Next.

arameter					Responses				
Name		Valu	e		1	Name		Value	
Fill_Factor_Bottom_	0.5				Value_2_l	Jniform	hity_Error	0.811325	
z_Extension	4e-07				Value_1_1	Mean		0.416991	
Slant_Angle	0.698132								
Criteria									
Nam	e	Туре	Expression		Criterion	Limit		Evaluated expression	
🐠 obj_Value2_	Uniformity_Error	Objective	Value2Uniformit	y_Erroi	MIN		0.81132	25	
obj_Value1	Mean	Objective	Value1Mean		MAX		-0.4169	91	
new									
Create new									
6								al	
_	ble		Objective		el la	Const	raint	Limit stat	e
T(x) Varia		· · · · · · · · · · · · · · · · · · ·	/						

- Optimization wizard
 - Third, the Optimization method has to be selected.
 - optiSLang provides a suggestion for suitable methods by an analogy to a traffic light system
 - Red: unsuitable
 - Yellow: suitable
 - Green: recommended
 - In this example an Evolutionary Algorithm is recommended and used.
 - Then, click on Next.

Optimization Wizard			- 0	\times
Optimization method Specify the optimization	method			৻₩
Analysis status: Constraints violations: Failed designs: Solver noise: Simulation runtime: Show additional set	Not set None Not set Not set short tings	✓ ✓ ✓ Iong	Optimization method Gradient based Image: Second S	
			< Back Next > Cancel He	lp

- Optimization wizard
 - Next, some additional options might be specified.
 - The option Show postprocessing during algorithm run is recommended to get access to the result data during the optimization run.
 - Then, click on Finish.

Optimization Wizard			×
Additional options Define additional options			<mark>∢</mark> ₩
Algorithm Postprocessing		÷	
Show Postprocessing on algorithm termination Wait for user-interaction to continue Show reduced data set if available			
< Back Finish Ca	ncel	He	lp

- Advanced Settings
 - By double-clicking the created optimization, the detailed parameters of the optimization algorithm can be adapted.

- Advanced Settings
 - By double-clicking the created optimization, the detailed parameters of the optimization algorithm can be adapted.
 - In the tabs "Initialization", "Selection", "Crossover" and "Mutation" grant access to numerous parameters of the algorithm.

rameter Start designs Crit tart tart population size: 20	eria	In	itializa	ation	Se	lectio																	
tart tart population size: 20					_	iecuo	n	Cro	ossov	/er	Mu	tatio	ı	Othe	r	Res	ult de	esigns					
tart population size: 20																							
																							•
rchive size: 20																							•
top																							
inimum number of generations:	5																						÷
Maximum number of generations: 20																							
lop arter generation of stagnation.	10	I	1	1	1	1	1	1	1	1	1	I.	1	1	1	I	1	1	1	1			•
Maximum change [%]:		I.	-	1	1	1	1	i.	1	1	1	i.	1	1	i.	I.	1	1	1		- I	10%	-
																			_				

- Advanced Settings
 - By double-clicking the created optimization, the detailed parameters of the optimization algorithm can be adapted.
 - In the tabs "Initialization", "Selection", "Crossover" and "Mutation" grant access to numerous parameters of the algorithm.
 - In the tab "Others", some predefined parameter sets are provided, which are appropriate for most optimizations (e.g. "EA 10000")

- Advanced Settings
 - Further, as an additional option the auto-save behavior of optiSLang can be adjusted.
 - By default, the project is automatically saved after the calculation of each design iteration.
 - Especially for designs with short calculation times, this can generate a lot of overhead and slows down the optimization.
 - Thus, it is recommended to set the auto-save option to only every 50 or 100 finished designs.

Parallelization of Design Calculation

- Parallelization Settings
 - Some optimization algorithms allow a parallel computation of designs.
 - For instance in case evolutionary algorithm, the parameters of all member designs of one generation are known and thus can be calculated at the same time in order to reduce the computational time.
 - In order to allow parallel calculation, the execution of more than one solver has to be enabled.
 - By double-clicking the VirtualLab solver, this additional option can be found.
 - The recommendation is, to use between the half number up to all of the real cores of the CPU, depending on the parallelization of the calculation of each individual design.

- Run the optimization
 - Activate the Evolutionary Algorithm window within the Scenery by clicking on it.
 - Start the optimization by pushing the Run button.

optiSLang – Optimization Results

- Optimization Results
 - After the optimization is finished the results are obtained within an additional window.

optiSLang – Optimization Results

- Optimization Results
 - The Pareto 2D diagram visualizes both target values, Uniformity contrast and Mean Efficiency, as a point cloud.
 - There the user is able to select the most appropriate design for his application.
 - In this example the design no. 8842 was selected with ~16% uniformity contrast and ~20% mean efficiency.

optiSLang – Optimization Results

- Optimization Results
 - Each design is stored within the optiSLang project directory in the subfolder ~\Optimization.opd\Evolutionary_Algorithm.
 - Each folder within this directory, named by the design number, contains all the files necessary to import the design again to VirtualLab.

					Hide dimension s	selection
Datei Start Freigeber	n Ansicht			~ 😗	1st: obj_Value2	Uniformity_Error 🔹
*	📩 🖌 🔽 Verschieben nach •	- 🗙 Löschen -	🖫 🔽 📮	•	2nd: obj_Value1	Mean 🔻 🖣
An Schnellzugriff Kopieren Eint	fügen 📔 Kopieren nach 🕶	Umbenennen Neuer Ordne	Eigenschaften	Auswählen	3rd: Value_1_Mean	n 🔻
Zwischenablage	Organi	sieren Ne	eu Öffnen		Hide plot setting	5
← → × ↑ 🔒 « Opti	mization.opd > Evolutionary_Algo	orithm	・ ひ "Evolutionary_Algo	orithm" dur 🔎	Show settings for: Cu	rrently active plot
🕹 Downloads \land	Name	Änderungsdat	tum Typ	Größe ^		
👌 Musik	Design8837	20.01.2018 22:	22 Dateiordner		- Hide design sele	ction
Videos	Design8838	20.01.2018 22:	22 Dateiordner			cloii
📥 Lokaler Datenträ	Design8839	20.01.2018 22:	23 Dateiordner		Sele	ect best design(s)
Daten (D:)	Design8840	20.01.2018 22:	23 Dateiordner		Select all	Invert selection
	Design8841	20.01.2018 22:	23 Dateiordner		Select di	Invereselection
JILECT CELLOIN	Design8842	20.01.2018 22:	23 Dateiordner		Design selection: 884	2;
asoubar	Design8843	20.01.2018 22:	24 Dateiordner		(a) them details	
Crailsheim	Design8844	20.01.2018 22:	24 Dateiordner		Show details	
G Data	Design8845	20.01.2018 22:	23 Dateiordner		Show design activ	(Kein Titel)
hellmann	Design8846	20.01.2018 22:	24 Dateiordner			
knoth	Besign8847	20.01.2018 22:	24 Dateiordner		Design set: All design	s 🔻
Workspace	Design8848	20.01.2018 22:	24 Dateiordner			
	Design8849	20.01.2018 22:	25 Dateiordner			
Heature.XXX	Design8850	20.01.2018 22:	25 Dateiordner	~		
Optimizati 🗸 🧹	:			>		
9.510 Elemente 1 Element	ausgewählt					

Common settings

₽×

VirtualLab Fusion – Import Optimization Result

- Import design result
 - To import the design of interest the Import optiSLang Results feature is used, where the corresponding design folder is chosen.
 - Finally, the imported LPD can be analyzed further in VirtualLab.

• As a summary the table below shows a comparison of the grating parameter and the performance criteria for the initial and the optimized design setup.

Parameter	Value & Unit Initial Setup	Value & Unit Designed Setup
Slanted Grating: Fill Factor	50.00%	80.08%
Slanted Grating: z-Extension	400.00nm	411.96nm
Slanted Grating: Slanted Angle	40.00°	30.08°
Mean value	45.47%	19.49%
Uniformity Error	84.48%	16.32%

title	Grating Optimization in VirtualLab Using optiSLang
document code	LGC.0004
version	1.0
toolbox(es)	Starter Toolbox, Grating Toolbox
VL version used for simulations	7.4.0.49
category	Application Use Case
further reading	 Analysis of Slanted Gratings for Lightguide Coupling Optimization of Lightguide Coupling Grating for Single Incidence Direction RDO-Journal Article: <i>"Innovation in Optics and Photonics – VirtualLab</i> and OptiSLang"