

Field Curvature Analyzer

Although developments in modern optics have caused an explosion in the number of different components available, lenses continue to play a major role in optical systems. Due to their curved nature, the focal point of most lens systems will lay on a curve rather than a plane behind the lens. This leads to an angle-dependent deviation between the actual focal position and the intersection point of the light beam with a plane positioned at focal length behind the lens. Most detectors used in imaging, however, operate as plane surfaces. This effect is called "field curvature" and represents an important aberration to consider in the performance analysis of any lens system. In this use case we introduce a specialized analyzer to investigate this effect.

Field of Curvature

Field curvature, also known as "curvature of field", is a common optical effect that causes a flat object to appear sharp in certain parts of the frame, instead of being uniformly sharp across the frame. This happens due to the curved nature of most optical elements, which project the image onto a curved surface, rather than flat. It is defined as a function between Δz and ϕ .

Where to Find the Field Curvature Analyzer

The *Field Curvature Analyzer* can be found in the *Analyzer* section of the *Optical Setup View* document.

To run the analyzer, choose *Field Curvature Analyzer* as *Simulation Engine* in the *Optical Setup Editor*.

Component to Analyze

Component to Analyze	"Spherical Lens" (# 3) 🛛 🗸		
Evaluate Field Curvature Relative to Focal Plane			
Reference Wavelength	555.15 nm 🗡		
Finite Object Distance			
Putput			
Results for Sagittal Plane	Results for Tangential Plane		
Angle Range	Positive y-Range		
Field Curvature Data Array	O Single Field Curvature Values		
Maximum Angle	45°		
Scanning Step Size	3°		

The *Field Curvature Analyzer* works independently from the actual optical system and its parameters. Therefore, the specific parameters need to be defined inside the analyzer.

Component to Analyze: Define which component shall be analyzed. A dropdown-menu will show all available options. In case there are multiple components with the same name, the index below the component will help distinguishing them.

Evaluation Distance

Edi	t Field Curvatur	e Analyzer			×	
	Setup					
	Component to	Analyze	"Spherical Lens" (#	3) ~		
	Evaluate Fie	eld Curvature Relative to	Focal Plane			
	Reference Wave	elength	555.15	nm Y		
	Finite Obje	Evaluate Field Cu	urvature Relative to	Focal Plane		
		Evaluation Distance			1	00 mm
	Output	Sagittal Plane	Pecults for Tang	ential Dlane		
	V Results for	Sagittar Flane	V Results for rang		1	
	Angle Range		Positive y-Range	~		
	Field Curvat	ture Data Array	Single Field Curv	ature Values/		
	Maximum Angl	le		45°		
	Scanning Step	Size		3°		
		OK	Cancel	Help		

Evaluate Field Curvature Relative to Focal Plane: The distance to the desired reference plane can either be directly calculated (by effective focal length) or specified by the user.

Object Distance

Edit Field Curvature Analyzer			×	
Setup				
Component to Analyze	"Spherical Lens" (# 3)	\sim	
Evaluate Field Curvature Relative to	o Focal Plane			
Reference Wavelength	555.15	nm Y		
Finite Object Distance				
Finite Object Dis	stance			
Distance to Object R	Plane		100	mm
Results for Sagittal Plane	Results for Tan	gential Plane		
Angle Range	Positive y-Range		\sim	
• Field Curvature Data Array	O Single Field Cu	rvature Values		
Maximum Angle		45°		
Scanning Step Size		3°		
Field Curvature Data Arr	ay 🔿 Sin	gle Field Curva	ature Va	alues
Maximum Object Height			1 mm	
Scanning Step Size			10 µm	
ОК	Cancel	Help		

Finite Object Distance: Likewise, the distance between the source and the object needs to be set. It can either be infinite or a specific distance. In case of an infinite distance the evaluation will be performed on a range of angles, whereas for a specific distance a maximum object height needs to be defined.

Tangential & Sagittal Plane

dit Field Curvature Analyzer	>
Setup	
Component to Analyze	"Spherical Lens" (# 3) 🛛 🗸 🗸
Evaluate Field Curvature Relativ	ve to Focal Plane
Reference Wavelength	555.15 nm 💙
Finite Object Distance	
Output	
Results for Sagittal Plane	Results for Tangential Plane
Angle Range	Positive y-Range \checkmark
Field Curvature Data Array	O Single Field Curvature Values
Maximum Angle	45°
Scanning Step Size	3°
-	

The evaluation can provide results for the tangential plane, the sagittal plane or both.

Sampling Parameters

Ed	it Field Curvature Analyzer		2
	Setup		
	Component to Analyze	"Spherical Lens" (# 3)	\sim
	Evaluate Field Curvature Relative to	Focal Plane	
	Reference Wavelength	555.15 nm 🗡	
	Finite Object Distance		
	Output		
	Results for Sagittal Plane	Results for Tangential Plane	
	Angle Range	Positive y-Range	~
	Field Curvature Data Array	O Single Field Curvature Values	
	Maximum Angle	45°	
	Scanning Step Size	3°	
	OK	Cancel Help	U.

12°

0.25°

Example: Field Curvature of a Spherical Lens

input field

- Incident angle/object height depending on case
- wavelengths:
 - 470.13nm
 - 510.14nm
 - 555.15nm
 - 610.17nm
 - 650.18nm

case 1: infinite distance d, 0° –12° angular range **case 2:** d = 100mm, 1mm object height

- r2: 3.5mm
- material: N-BK7

Sagittal & Tangential Plane for Single Wavelength

- 610.17nm
- 650.18nm

a) Field curvature vs. angle

b) Field curvature vs. height

Investigation for Multiple Wavelengths

- 555.15nm
- 610.17nm
- 650.18nm

sagittal plane field curvature for multiple wavelengths:

a) Field curvature vs. angle

b) Field curvature vs. height

For more information about formatting VirtualLab Fusion documents, see: <u>How to Format VirtualLab Fusion Results</u>

title	Field Curvature Analyzer	
document code	SWF.0002	
document version	2.0	
software edition	VirtualLab Fusion Basic	
software version	ware version 2021.1 (Build 1.180)	
category	egory Feature Use Case	
further reading	 <u>Distortion Analyzer</u> <u>How to Format VirtualLab Fusion Results</u> <u>Focus Investigation behind Aspherical Lens</u> <u>Evaluation of an F-Theta Scanning Lens</u> 	