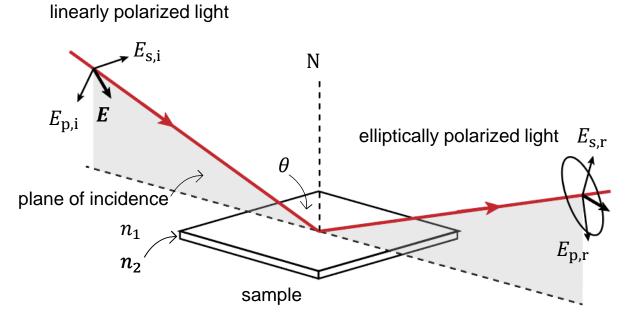

Ellipsometry Analyzer


Ellipsometry is an optical measurement method which is commonly used to determine the dielectric properties of thin films. The measurement involves determining the change in the polarization state of light upon reflection or transmission from the sample, for different wavelengths and angles of incidence. Hence, it can be used to characterize the composition, roughness, thickness, crystalline properties, electrical conductivity, and other material properties. It is very sensitive to changes in the optical response of the incident radiation interacting with the material under study. This use case demonstrates the basic principles of ellipsometry and illustrates the use of the built-in ellipsometry analyzer in VirtualLab Fusion.

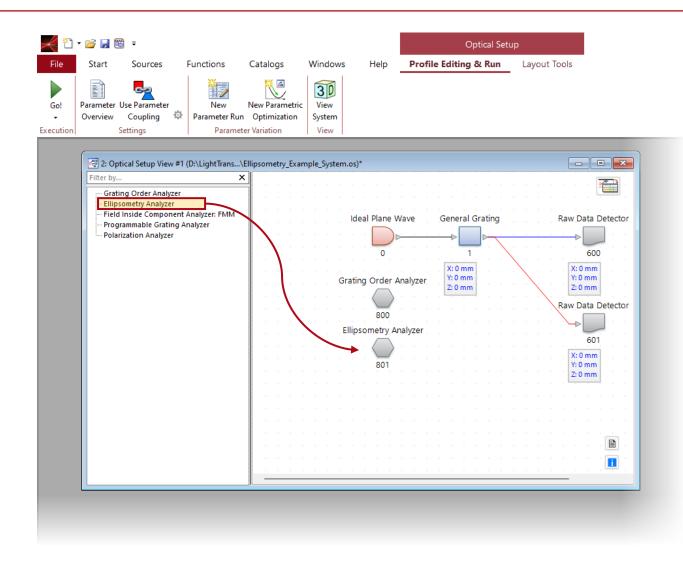
Basic Principle of Ellipsometry

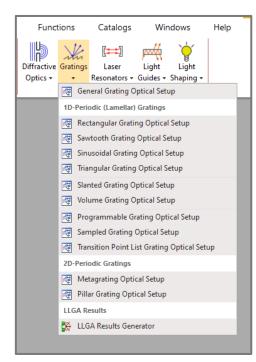
When linear polarized light (decomposed into a wave polarized parallel $(E_{p,i})$ and one perpendicular $(E_{s,i})$ to the plane of incidence) interacts with a dielectric medium, the polarization state will change. From the resulting phase shift (Δ) between the impinging and reflected (or transmitted) wave, as well as the ratio of the reflected (or transmitted) amplitudes $(\tan(\Psi))$, the dielectric properties of the medium (n, k) can be derived.

Basic Principle of Ellipsometry

The aim of an ellipsometry measurement is to obtain the complex reflectance ratio ρ , which can be parametrized by the phase difference Δ and the amplitude component Ψ . Ellipsometry measures the reflection for the s- and p-component, which can be described as complex reflection (or Rayleigh in case of a grating) coefficients (R_p , R_s): $\rho = \frac{R_{\rm p}}{R_{\rm s}} = \tan(\Psi) \exp(i\Delta).$

Hence, phase difference \varDelta and the amplitude component Ψ can be written as


$$\Delta = \delta_{\rm p} - \delta_{\rm s}$$
, and $\tan \Psi = \frac{|R_{\rm p}|}{|R_{\rm s}|}$,


where δ_p and δ_s are the phase changes for the p- and s-polarized component after reflection, respectively.

After the determination of Δ and Ψ a model analysis must be performed, as the optical constants cannot be derived directly, in general. This analysis usually requires different types of models, depending on the type of material of the sample and will not be discussed in this example.

Note: Similar considerations apply to the transmission case, but for sake of simplicity only reflection is discussed.

Adding the Ellipsometry Analyzer to the System

The Ellipsometry Analyzer can be found in the menu of any *Grating Optical Setup* and be added to the system by drag & drop. Please note that the analyzer will only function if a stack is defined in the corresponding grating component (see: <u>Configuration of Grating Structures by Using</u> Interfaces).

dit Ellipsometry Analyzer				×	
Analyzed Output			(Reflecti	on
Output Amplitude Compo Müller Matrix Used Physical Property f Phase Shift of TM Relation	for Angles	_	e Differer gle (Deg)	nce Δ	✓
Parameter	From	То	Steps	Step Size	1
Wavelength	400 nm	600 nm	21	10 nm	1
Spherical Angle Theta	Spherical Angle Theta 25° 65° 3 20°			20°	
	ОК		ancel	Help	

- The *Ellipsometry Analyzer* can either calculate the results for *Reflection* or *Transmission* of light at the defined stack.
- This stack can comprise of a single or a certain number of layers, or a 1D or 2D-periodic structure (grating).
- The analyzer configures the orientation and positions of *Optical Setup* during a calculation. Hence, it is not required to configure either the positions of the light source, detectors in the optical system or the polarization state of light in the source.

Order Selection

Edit Ellipsometry Analyz	er				×	
Analyzed Output						
⊖ Transmission						
	_			_		_
Selected Order			-1 🜩			
		_				
Müller Matrix						
Used Physical Property f	for Angles	; An	gle (Deg)		~	
Phase Shift of TM Relation	ve to TE				0°	
Parameter	From	То	Steps	Step Size	1	
Wavelength	400 nm	600 nm	21	10 nm		
Spherical Angle Theta						
	OK		ancel	Hele	_	
	UK		ancer	Help		

1 ≑

- For a layer stack, without lateral periodicity the order (0,0) should be chosen.
- If a grating structure is used as sample, the considered diffraction order can be selected, by defining the index of the investigated order in x and y.
- In case of a 1D-periodic gratings the second index should be zero.

E	dit Ellipsometry Analyz	er				×
	Analyzed Output		c	Reflecti	on	
	Selected Order		-1 🜩			10
0	utput					
\checkmark	Amplitude Comp	onent 4		Phase I	Difference	Δ
	Müller Matrix					
	Used Physical Property 1	for Angles	Ang	gle (Deg)		~
	Used Physical Property t Phase Shift of TM Relati	_	Ang	gle (Deg)		 ✓ 0°
		_	Ang To	gle (Deg) Steps	Step Size	~ 0°
	Phase Shift of TM Relati	ve to TE			Step Size	0°
	Phase Shift of TM Relati	ve to TE	То	Steps		0°

Available Outputs:

• Amplitude component Ψ and phase difference Δ , defined by:

$$\frac{R_{\rm p}}{R_{\rm s}} = \tan(\Psi) \exp(i\Delta)$$

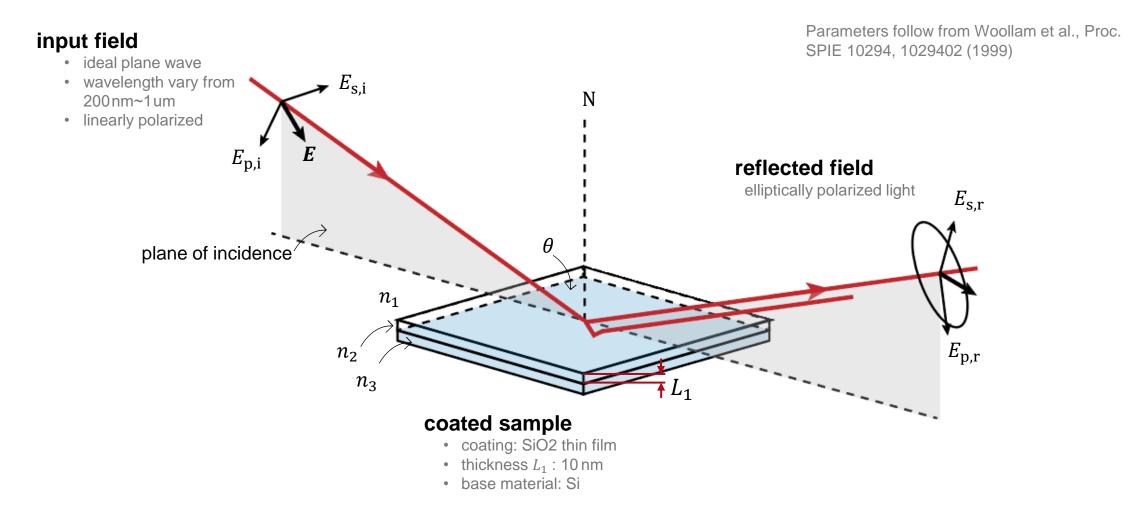
The resulting entries of the Müller matrix \mathcal{M} , that describe the transformation of the Stokes parameters by the analyzed element:

$$\mathcal{M} = \begin{pmatrix} \frac{1}{2}(A_{\rm p} + A_{\rm s}) & \frac{1}{2}(A_{\rm p} - A_{\rm s}) & 0 & 0 \\ \frac{1}{2}(A_{\rm p} - A_{\rm s}) & \frac{1}{2}(A_{\rm p} + A_{\rm s}) & 0 & 0 \\ 0 & 0 & A_{\rm p} \cdot A_{\rm s} \cdot \cos(\Delta) & A_{\rm p} \cdot A_{\rm s} \cdot \sin(\Delta) \\ 0 & 0 & -A_{\rm p} \cdot A_{\rm s} \cdot \cos(\Delta) & A_{\rm p} \cdot A_{\rm s} \cdot \cos(\Delta) \end{pmatrix}$$

with $R_{\rm p} = A_{\rm p} {\rm e}^{i\phi_p}$ und $R_{\rm s} = A_{\rm s} {\rm e}^{i\phi_s}$

Angle Definition

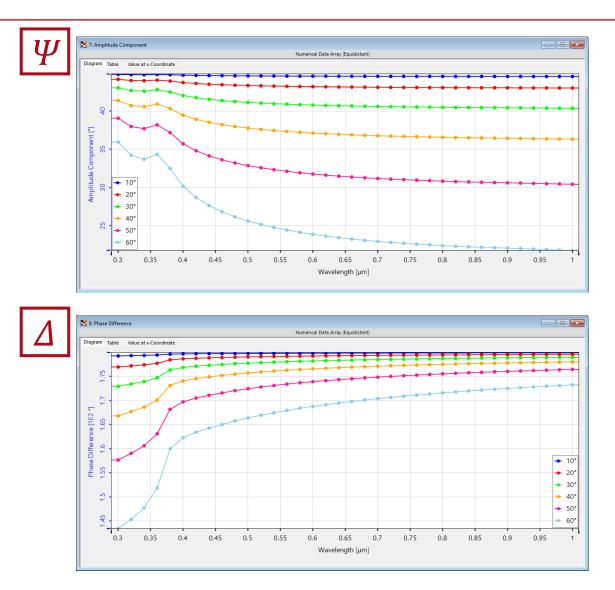
Edit Ellipsometry Analyze	er				×	
Analyzed Output		c	Reflecti	on		
Selected Order Output Amplitude Compo Müller Matrix	nent Ψ	-1 🜩	e Differer	nce A	•	
				gle (Deg) gle (Rad)		
Used Physical Prope	erty for A	Angles	An	gle (Deg)		~
Phase Shift of TM Re	elative t	o TE				90°
Wavelength	400 nm	600 nm	21	10 nm		
Spherical Angle Theta	25°	65°	3	20°		
	ОК	Ca	ancel	Help		

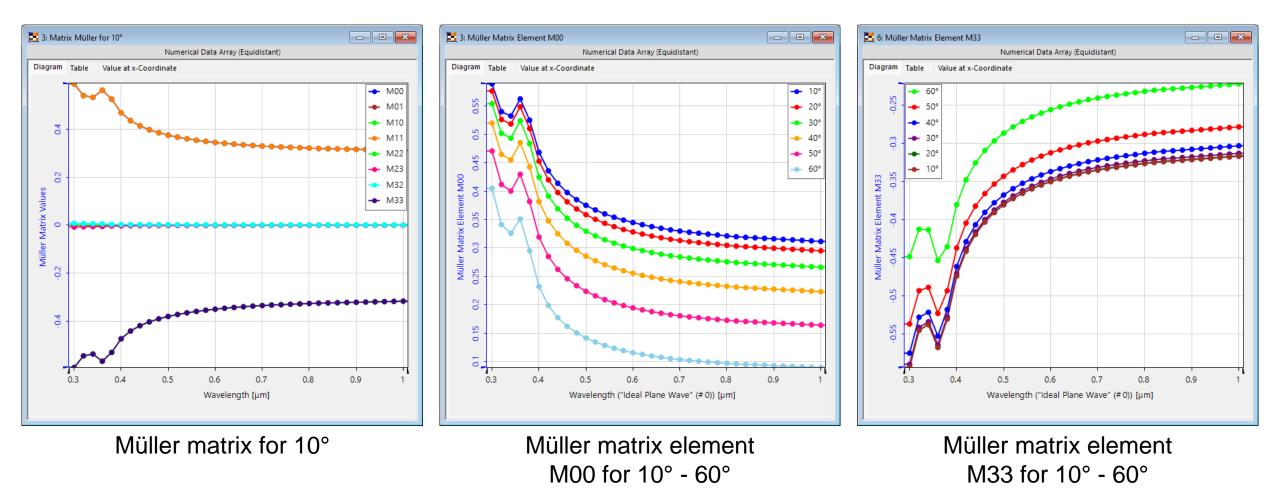

- The angle of incidence can either be defined in degree ٠ (Deg) or radian (Rad).
- The *Phase Shift of TM Relative to TE* is a phase shift ٠ compensator that - if introduced into the ellipsometry analysis - will only shift the relative phase difference between p- and s-polarizations (Δ) and will have no impact on the actual amplitudes of the p- and s-polarized components (Ψ).

Sweep of Wavelength & Angle of Incidence

dit Ellipsometry Analyzer				\times
Analyzed Output				
O Transmission		Reflection	on	
Selected Order	-1 🜩			1 🖨
Output				
Amplitude Component	Ψ 🗾 ΡΙ	nase Differer	ice ∆	
Müller Matrix				
Used Physical Property for An	gles A	ngle (Deg)		~
Phase Shift of TM Relative to	TE			0°
Parameter	From	То	Steps	Step Size
Wavelength	400 nm	600 nm	21	10 nm
			3	

- The *Ellipsometry Analyzer* includes an option for a parameter sweep of the wavelength and angle of incidence by defining the range, step size and number of steps of the variation.
- Please note, that the range of wavelength of the sweep must be within the range of wavelength of the material definitions by which the sample is defined.


Example System


See the full Use Case: Variable Angle Spectroscopic Ellipsometry (VAS) Analysis of a SiO2-Coating

Example Output of the Analyzer

Edit Ellipsometry Analyz	er)
Analyzed Output			O Refle	ction	
Selected Order		0			0 ≑
Output					
Amplitude Compo	onent Ψ	P	hase Diffe	rence Δ	
Müller Matrix					
Used Physical Property	for Angles		Angle (Deg	g)	~
Phase Shift of TM Relati	ve to TE				0°
Parameter	From	То	Steps	Step Size]
Wavelength	300 nm	1 µm	36	20 nm	
Spherical Angle Theta 10° 6			6	10°	
	ОК		Cancel	Hel	p

Example Output of the Analyzer – Müller Matrix

title	Ellipsometry Analyzer
document code	SWF.0019
document version	1.1
software edition	VirtualLab Fusion Advanced
software version	2023.1 (Build 1.556)
category	Feature Use Case
further reading	Variable Angle Spectroscopic Ellipsometry (VAS) Analysis of a SiO2-Coating