Diffraction Angle Calculator

Abstract

The defining characteristic of diffraction gratings is the periodicity of their structure which, as predicted by Fourier theory, causes incident light to be split into a discrete set of orders, both in transmission and reflection. How many of these propagating orders there are, as well as the deflection angle of each of them, depends on the wavelength of the radiation, the refractive indices of the media in front of and behind the grating, the period of the structure, and the angle of incidence. This dependence is mathematically encoded in the grating equation. In this use case we present the Diffraction Angle Calculator of VirtualLab Fusion, a convenient tool for calculations involving the grating equation.

Open the Diffraction Angle Calculator

The Diffraction Angle Calculator can be accessed through the Calculators drop-down list under the Start tab.

Setting the Input Parameters

The user needs to input values for the Grating Period, Incident Angle, Wavelength, and define the materials in front of and behind the grating. The incident wave and the reflected orders reside in the First Material, while the transmitted orders are in the Second Material.

The Switch Materials button can be used to swap the two materials.

Define Diffraction Orders

Within the Diffraction Orders box, you have the option to specify the Maximum Shown Order. This parameter dictates the number of propagating orders that will be visible. The minimum and maximum propagating orders, for both reflection and transmission, are displayed as the Reflected Orders Range and Transmitted Orders Range, respectively.

Grating Equation

The Diffraction Angle Calculator shows the resulting diagram in $x-z$ plane. The angles can be calculated from the wave vector and vice versa.
Quantitatively, the wave vector $k_{\text {out }}$ of a diffraction order l is calculated by the grating equation,

$$
\begin{gathered}
k_{\mathrm{out}, \mathrm{x}}=k_{\mathrm{in}, \mathrm{x}}+\frac{2 \pi l}{P_{\mathrm{x}}} \\
k_{\mathrm{out}, \mathrm{z}}=\operatorname{sign}\left(n_{\mathrm{out}}\right) \sqrt{\left(\frac{2 \pi n_{\mathrm{out}}}{\lambda}\right)^{2}-k_{\mathrm{out}, \mathrm{x}}^{2}}
\end{gathered}
$$

where P_{x} is the grating period, n is the refractive index, λ is the vacuum wavelength.
$2 \pi / P_{x}$ is often referred to as the x-component of the grating vector.

Diffraction Order Diagram

109 7: Period: 5 um; Incident Angle: 45° @ 532 nm (... $\square \square$
Diagram Table

Order	Angle	Value	
1	45°	1	
T-3	15.404°	1	
T-2	10.782°	1	

T-3	15.404°	1
T-2	19.782°	1
T-1	24.284°	1
TO	28.952°	1

1097 7: Period: 5 mm; Incident Angle: 45° @ 932 nm (... $\square \square$

The user can generate a separate window for the diagram, which can be saved and zoomed into, by clicking on Separate Diagram. Additionally, a table displaying the diffraction angles is also provided.

An Example

Let us now consider another example. For this case, we choose the First Material as fused silica and the Second Material as air, with an Incident Angle of 25°. We limit the Maximum Shown Order to 1.

The Example in General Optical Setup

We employ a General Optical Setup to simulate an analogous system. The diffraction grating is described by a Grating Component, using the FMM/RCWA [S-Matrix] solver. We can see that this yields the same results as the Diffraction Angle Calculator, where the outcome is directly computed by the grating equation.

Document Information

title	Diffraction Angle Calculator
document code	SWF.0037
document version	1.0
software edition	- VirtualLab Fusion Basic (for the calculator) • VirtualLab Fusion Advanced (for the Grating Component used for comparison)
software version	2023.1 (Build 1.556)
category	Feature Use Case
further reading	

