

Diffraction Angle Calculator

Abstract

The defining characteristic of diffraction gratings is the periodicity of their structure which, as predicted by Fourier theory, causes incident light to be split into a discrete set of orders, both in transmission and reflection. How many of these propagating orders there are, as well as the deflection angle of each of them, depends on the wavelength of the radiation, the refractive indices of the media in front of and behind the grating, the period of the structure, and the angle of incidence. This dependence is mathematically encoded in the grating equation. In this use case we present the Diffraction Angle Calculator of VirtualLab Fusion, a convenient tool for calculations involving the grating equation.

Open the Diffraction Angle Calculator

The *Diffraction Angle Calculator* can be accessed through the *Calculators* drop-down list under the *Start* tab.

Setting the Input Parameters

Wavelength	532 nm]		
Grating Period	2 µm ×	2 µm		
Cartesian Angle α	25°			
Cartesian Angle β	0*			
First Material				
Name Fused_Silica		9		
Catalog Material	~	2 📔		
State of Matter	Solid	\sim		
Second Material				
Catalog Material State of Matter	Gas or Vacuum			
Diffraction Orders Reflected Orders Range: R[-7; -5] R[+3; +5] Transmitted Orders Range: T[-7; -5] T[+3; +5] Select Shown Orders				
Validity: 🕑				

The user needs to input values for the Grating Period, Cartesian Angle (which refer to the incident angle), *Wavelength*, and define the materials in front of and behind the grating. The incident wave and the reflected orders reside in the *First Material*, while the transmitted orders are in the *Second Material*.

The *Switch Materials* button can be used to swap the two materials.

Select Diffraction Orders to Show

12: Diffraction Angle Calc	ulator		4	
Wavelength	532 nm			
Grating Period	2 µm ×	2 µm		
Cartesian Angle α	25°			
Cartesian Angle β	0°			
First Material				
Name Fused_Silica		Q	1	
Catalog Material	~	2	3	
State of Matter	Solid	~	2	
Name Air				
State of Matter	Gas or Vacuum			
Diffraction Orders Reflected Orders Range: R Transmitted Orders Range	-7; -5] R[+3; +5] T[-7; -5] T[+3; +5]			•
Select Shown Orders				
			1	

Within the *Diffraction Orders* box, you have the option to select the propagating orders that will be visible. The minimum and maximum propagating orders, for both reflection and transmission, are displayed as the *Reflected Orders Range* and *Transmitted Orders Range*.

	Alpha	Beta	Value	
1	25°	0°	1	
T[-6; 0]	-78.025°	0°	1	
T[-5; -2]	-57.261°	-49.269°	1	
T[-5; -1]	-47.639°	-22.265°	1	
T[-5; 0]	-45.423°	0°	1	
T[-5; +1]	-47.639°	22.265°	1	
T[-5; +2]	-57.261°	49.269°	1	
T[-4; -3]	-47.76°	-63.067°	1	
T[-4; -2]	-31.811°	-36.467°	1	

Grating Equation

The *Diffraction Angle Calculator* calculates the diffraction angles and visualizes them together with the incident angle. All these angles can be calculated from the wave vector and vice versa.

Quantitatively, the wave vector \mathbf{k}_{out} of a diffraction order (l, m) is calculated by the grating equation,

$$k_{\text{out,x}} = k_{\text{in,x}} + \frac{2\pi l}{P_{\text{x}}}$$

$$k_{\text{out,y}} = k_{\text{in,y}} + \frac{2\pi m}{P_{\text{y}}}$$

$$k_{\text{out,z}} = \text{sign}(n_{\text{out}}) \sqrt{\left(\frac{2\pi n_{\text{out}}}{\lambda}\right)^2 - k_{\text{out,x}}^2 - k_{\text{out,y}}^2}$$

where *P* is the grating period, *n* is the refractive index, λ is the vacuum wavelength.

 $2\pi/P$ is often referred to as the grating vector.

Diffraction Order Diagram

Diffraction Order Diagram

The user can generate a separate window for the diagram, which can be saved and zoomed into, by clicking on Separate Diagram. In the 2D Diagram, you have the option to plot the Cartesian Angle α . This allows you to visualize the x-z plane, where all orders within a specified β Range are projected into this plane. Similarly, when you select the Cartesian Angle β option, you will observe all orders within a certain α Range projected onto the y-z plane.

An Example

In this example, we choose the *First Material* as fused silica and the *Second Material* as air, with the *Cartesian Angle* α of 25° and β of 0°. We only select to show the orders $l \in (-1,1)$ and m = 0. m = 0 implies that the grating vector in y direction is 0.

The Example in General Optical Setup

We employ a *General Optical Setup* to simulate an analogous system. The diffraction grating is described by a *Grating Component*, using the FMM/RCWA [S-Matrix] solver. A 1D grating is specified because in this scenario (m = 0), there is no effect in the y-z plane. We can see that this yields the same results as the *Diffraction Angle Calculator*, where the outcome is directly computed by the grating equation.

title	Diffraction Angle Calculator
document code	SWF.0037
document version	2.0
required packages	 (Though the Grating Component used for comparison requires VirtualLab Fusion Advanced)
software version	2024.1 (Build 1.132)
category	Feature Use Case
further reading	 <u>Analysis of Blazed Grating by Fourier Modal Method</u> <u>Thin Element Approximation (TEA) vs. Fourier Modal Method (FMM) for Grating Modeling</u>