

Cross-Platform Parameter Sweep with Python

Abstract

VirtualLab Fusion allows external access to its modeling technology, solvers and results. This is helpful in order to be able to apply other data processing or optimization tools to further investigate optical simulations. In this example, we demonstrate how to run a parameter sweep using a Python script and how to collect the results, which can be further processed with all the capabilities offered by Python. Exemplarily, the diffraction efficiency of a grating is analyzed rigorously.

This Use Case Shows...

Python

• external functions

VirtualLab Fusion

- optical setup definition
- fast physical optics simulation engine

Where to Find The Files

The user can find all files in the folder *SampleFiles*. This archive with the files can be downloaded from our <u>website</u>.

README File

📕 > This PC > Da	ata (D:)	>	SampleFiles
Name	^		
resources			
📕 vlfpy			
🔬 config.ini			
🍨 main.py			
README.html			
README.md			
requirements.tx	t		

In the README file, you can find a brief overview of the configuration settings and the functions used in the Python library for this use case.

Python Library for Simulation of Optical Systems in VirtualLab Fusion

Package Content

virtualpy.objects

Enum Physical Property

This enumeration determines what the physical property of a physical value is, e.g. length, time, percentage etc.

Abstract Class PhysicalValueBase

Base class for storage of physical values.

Attributes

- physical_property: PhysicalProperty the physical property of the physical value
- comment: str a comment specifying what the physical value actually is

Class PhysicalValue

Prepare Python

Make sure that **Python*** is installed on the computer. Notice that the option **Add python.exe to PATH** should be selected for installation.

* This Use Case has been created with Python 3.11.0. Python Release Python 3.11.0 | Python.org

Prepare Python

SampleFiles

L	> This PC > Data	a (D:)	>
Na	me	^	
R.	resources		
	vlfpy		
5	config.ini		
ø	main.py		
۲	README.html		
¥	README.md		
	requirements.txt		

- Make sure that Python 3.11.0 is installed on the computer. For demonstration purposes, we use the code editor Visual Studio Code as it offers a user-friendly installation workflow*.
- Open the Python command line and change directory to the *SampleFiles* folder.
- The names of all required packages are saved in the file requirements.txt, run the following command to make sure that all these packages are installed:

pip install -r requirements.txt

* For further information of the code editor Visual Studio Code for Python please read:

https://code.visualstudio.com/docs/python/python-tutorial

Note that here we demonstrate the installation of the required packages in the global environment. For users working with multiple Python projects, it is recommended to use project-specific virtual environments. Please also refer to the tutorial in the link above to create a virtual environment and install the required packages.

For a step-by-step tutorial on how to connect Python to VirtualLab Fusion, please see: Execute an Optical Simulation in VirtualLab Fusion with Python

Configure the Path

		🚞 « Program Files > Wyrowski Phote	onics GmbH > VirtualLab Fusion 2023
➢ > Dieser PC → Data (D)	:) > SampleFiles >	Name	Туре
Name		tbbbind.dll	Application extension
resources		tbbbind_2_0.dll	Application extension
🚞 vlfpy		الله tbbmalloc.dll	Application extension
Config	Open the config ini file	tbbmalloc_proxy.dll	Application extension
		ThemedWizard.lic	LIC File
🔮 main	≣ config.ini ×	🔊 VirtualLab.Design.dll	Application extension
requirements	≣ config.ini 1 [paths]	VirtualLab.exe	Application
	<pre>2 virtuallab = C:\Program Files\Wyrowski Photonics GmbH\VirtualLab Fusion 3</pre>	2023 🐼 VirtualLab.exe.config	Configuration-Quelldatei
	4 [globals] 5 use multicore = 1	🔤 VirtualLab.pdf	Microsoft Edge PDF Document
	6 number_of_cores = 12	VirtualLab.Programming.dll	Application extension
		NirtualLab.Programming.xml	XML-Quelldatei
		VirtualLab.Resources.dll	Application extension
	 Set the directory of your VirtualLab 	VirtualLab.Resources.dll.config	Configuration-Quelldatei
	Fusion installation (the folder which	VirtualLab.UI.WPF.dll	Application extension
	contains the VirtualLab.exe).	🖏 VirtualLabAPI.dll	

Define an Optical Setup in VirtualLab Fusion

Save the Optical Setup and Export Parameters Into an XML File

📕 > This PC > Dat	a (D:)	>	Sam	pleFiles
Name	^			
resources				
📕 vlfpy				
💭 config.ini			•	Sav
💿 main.py				roor
README.html				resc
README.md				

requirements.txt

- Save the .OS file in the *resources* folder.
- Export the .XML file to the *resources* folder.

GratingEfficiency.xml xml file containing all parameters of the optical setup from VirtualLab

Run the Simulation

1.) Open the main.py file.

2.) Set the path to that of the optical setup to be evaluated. In this case, as mentioned in the previous page, the optical setup is saved in the *resources* folder.

3.) single_run() is uncommented to simulate the optical setup.

4.) Press the play button at the upper right corner of the window to run the code.

In this example, the -1st, 0th and 1st order efficiencies are displayed after executing the function.

TERMINAL
"Grating Order Analyzer" (# 800) (Results for Individual Orders)
Efficiency T[-1; 0]: 87.41 % Efficiency T[0; 0]: 10.331 % Efficiency T[+1; 0]: 0 %
Simulation Time (s): 0.25

Parameter Scanning – Varying Single Parameter

- As an example, we demonstrate how to scan a selected parameter in the optical setup and to check its impact on the results.
- In this example, the grating depth is varied and the diffraction efficiency of the -1st and 0th transmission orders are evaluated.

Parameter Scanning – Varying Single Parameter

- Set the range of values and the number of steps for scanning here.
- Set the index of the LightPathElement and ID of the parameter to be scanned here.

<LightPathElement Index="1" Name="Rectangular Grating">

<Name>Stack #2 (Rectangular Grating) | Surface #1 (Rectangular Grating Interface) | Modulation Depth</Name> <ID>Stack2.LayersAsArray[0].Interface.ModulationDepth</ID> <ShortName>Modulation Depth</ShortName> <Value>1.850000000000000e-06</Value> <Unit>m</Unit> The information of LightPathElement index and parameter ID can be found in xml file saved in the *resources* folder.

Parameter Scanning – Varying Single Parameter

parameter_scanning_1D() in main.py file is uncommented to perform a 1D parameter scanning.

In this example, the grating depth is varied and the diffraction efficiency of the -1st and 0th transmission orders are evaluated.

For comparison, this is the result if the parameter run is performed in VLF directly:

Parameter Scanning – Varying Multiple Parameters

- One can also vary multiple variables and make a multi-dimensional scan over the parameter space.
- In this example, both the grating depth and the fill factor are varied, and the diffraction efficiency of the -1st order is investigated.

See the full Use Case: Stretching or Compression of Ultrashort Pulses with Highly Efficient Transmission Gratings

Parameter Scanning – Varying Multiple Parameters

🗬 main.	
	main.py > 🏵 parameter_scanning_2D
95	ef parameter_scanning_2D():
96	# Initialize the optical setup
97	optical_setup = OpticalSetup(OS_PATH)
98	
99	# Define steps for modulation depth
100	md_steps = 31
101	
102	# Define steps for relative slit width
103	sw_steps = 31
104	# Define values for modulation denth here: $(1, 1, 2)$ $(1, 2)$
105	$\#$ berine values for modulation depth, here. 0.1 μ m - 10 μ m, 51 steps (+ 0.55 μ m per step) md values - nn linenace(0.1 * MTCPO 10 * MTCPO md stens)
100	mu_varues = np.iinspace(0.1 micko, 10 micko, mu_sceps)
108	# Define values for relative slit width here: 20 % - 80 % 31 steps (+ 2 % per step)
109	sw values = np.linspace(0.2, 0.8, sw steps)
110	
111	# Print the number of iterations to the console
112	print <mark>(f'Num</mark> ber of Iterations = {len(md_values) * len(sw_values)}\n')
113	
114	# Define the parameter set (further information in README.html)
115	# 1. parameter: Index attribute of the LightPathElement, here: Rectangular Grating
116	# 2. parameter: ID tag of the parameter to be scanned
117	# 3. parameter: the already defined values
118	<pre>md_params = ParameterSet(1, 'Stack2.LayersAsArray[0].Interface.ModulationDepth', md_values)</pre>
119	<pre>sw_params = ParameterSet(1, 'Stack2.LayersAsArray[0].Interface.RelativeSlitWidth', sw_values)</pre>
120	

- Set the range of values and the number of steps for scanning here.
- Set the index of the LightPathElement and ID of the parameter to be scanned here.
- The information of LightPathElement index and parameter ID can be found in xml file saved in the "resources" folder.

Parameter Scanning – Varying Multiple Parameters

parameter_scanning_2D() in main.py file is uncommented to perform a 2D parameter scanning.

In this example, the grating depth and the fill factor are varied, the diffraction efficiency of the -1st order is evaluated.

For comparison, this is the result if the parameter run is performed in VLF directly:

title	Cross-Platform Parameter Sweep with Python
document code	CPF.0005
version	1.0
toolbox(es)	(depending on optical setup; for this example VirtualLab Fusion Advanced)
VLF versionPython version	VirtualLab Fusion 2023.1 (Build 1.556)Python 3.11.0
category	Feature Use Case
further reading	 <u>Cross-Platform Optical Modeling and Design with VirtualLab Fusion and MATLAB</u> <u>Execute an Optical Simulation in VirtualLab Fusion with Python</u> <u>Stretching or Compression of Ultrashort Pulses with Highly Efficient Transmission</u> <u>Gratings</u>