

Cross-Platform Optical Modeling and Design with VirtualLab Fusion and Python

Abstract

VirtualLab Fusion allows external access to its solvers. This is helpful if data processing or optimization tools other than those of VirtualLab should be used. Via the standard batch mode, we demonstrate how to use Python to trigger VirtualLab in the background to run optical simulations and output their results which can then be further processed and visualized with Python's capabilities. As example rigorous grating analyses and parametric scanning are shown.

Workflow Overview

Python

- interactive access to batch mode files
- external mathematical functions and tools

Batch Mode Files

- execution of simulations
- optical parameters and simulation result storage

VirtualLab Fusion

- optical setup definition
- kernel simulation engine

Define Optical Setup in VirtualLab Fusion

Create Batch Mode Files

- First we create batch mode files for a selected optical setup.
- In the selected folder, three new files are generated
 - 1. parameters.xml

xml file containing all parameters of the optical setup from VirtualLab

2. sample_batch.bat

batch file containing commands intended to be executed

3. system.os

os file (VirtualLab file format) containing the original optical setup

Batch File Content

The batch file can be opened with any editor like program.

After the generation of the batch file, there will be as many commands listed to trigger a VirtualLab Fusion simulation as simulation engines are available in the optical setup document, e.g.

- Field Tracing
- Classic Field Tracing
- Ray Tracing
- Ray Tracing System Analyzer

Typically not all type of simulations are required and also not all optional arguments, e.g. the generation of a subfolder where the results are input.

-performLPD {1} The mandatory argument -performLPD must be followed by the path and file name of the Optical Setup to be simulated. {2} The output folder. Results are written into a results.xml file. Complex documents which cannot be saved into this XML file are stored as separate documents, the results.xml file then contains only a reference to that file. If warnings or errors occur during the simulation, they are written into a ProcessingInfo.log file. (If Pop up Error Messages or Pop up Warning *Messages* is activated in the Global Options dialog (\rightarrow Sec. 6.22), the corresponding messages are also shown in a message box.) -parameters {3} With this optional argument you can specify a XML file with parameter values. These values are then used for the simulation instead of the original parameter values. You can use File > Export > Create Batch Mode Files to create a sample XML file named parameters.xml with the correct format. -engine {4} With this optional argument you can specify the simulation engine to be used. "0" refers to Classic Field Tracing, "1" to Field Tracing, "2" to Ray Tracing, and "4" to Ray Tracing System Analyzer. Other numbers refer to the index of the analyzer to be used for the simulation. If this parameter is not specified, the *Default Simulation Engine* from the Global Options dialog (\hookrightarrow Sec. 6.5) is used. For Laser Resonator Optical Setups always the Eigenmode Analyzer is used. -subfolder If this optional parameter is specified, a subfolder in the output folder {2} is

> generated where the result and logging files are stored. In this way consecutive calls of the virtuallab.exe do not overwrite already calculated results. The name of the subfolder is <Name of simulation engine> (<Date and

DESCRIPTION

Time>).

The command looks like the following:

virtuallab.exe -performLPD {1} {2} [-parameters {3}] [-engine {4}] [-subfolder]

ARGUMENT(S)

Modify Batch File

Open batch file (e.g. with an editor)

- 1. choose simulation engine (in this example only the Grating Order Analyzer is used)
- 2. delete the output option

(the presented example works without subfolder)

Name ^	Туре
GratingEfficiency	OS File
parameters	XML Document
sample_batch	Windows Batch File
🖌 system	OS File
system	Windows Batch File OS File

Execute Simulation Using Batch File

- It is recommended to execute the batch file first (e.g. by double click in the MS Explorer window), as a pre-check for the complete workflow.
- After execution, a new file is generated
 - results
 (xml file containing the result values)
- One may also open the result.xml file to check the result values.

before executing batch file

after executing batch file

Checking Simulation Results Generated by Batch File

• Results in VirtualLab Fusion

Results in xml file (can be viewed e.g. in

Execute Simulation Using Python (via Batch)

- A basic Python function has been prepared for executing the batch file and interacting the related xml files.
- Copy "VLFBatchEvaluation.py" file directly to the working folder.

Name	Туре				
pycache	File folder				
GratingEfficiency.os	OS File				
📈 system.os	OS File				
initpy	Python source file				
ParameterScan1D.py	Python source file				
ParameterScan2D.py	Python source file				
SingleRun.py	Python source file				
VLFBatchEvaluation.py	Python source file				
sample_batch.bat	Windows Batch File				
parameters.xml	XML Document				
results.xml	XML Document				

Execute Simulation Using Python (via Batch)

- In this example, one can execute the Python function below FunctionTest(Path, IndexToBeFound, Search_Parameter_ ...)
- A Python file "**SingleRun.py**" is prepared for executing the function.

Name	Туре
📕pycache	File folder
GratingEfficiency.os	OS File
≼ system.os	OS File
initpy	Python source file
ParameterScan1D.py	Python source file
ParameterScan2D.py	Python source file
SingleRun.py	Python source file
VLFBatchEvaluation.py	Python source file
sample_batch.bat	Windows Batch File
parameters.xml	XML Document
results.xml	XML Document

In this example, the -1st order efficiency is displayed after executing the function

Parameter Scanning – Varying Single Parameter

- The basic Python file can be used as a sub-function in another Python file as well.
- As an example, we demonstrate how to scan a selected parameter in the optical setup and to check the influence on the result.
- In this example the grating depth is varied, and the transmitted diffraction efficiency of the -1st order is evaluated.

Parameter Scanning – Varying Single Parameter

To use the example file, directly copy the Python file "ParameterScan1D.py" into the working folder, adjust the working path, and then execute it.

					-					
			VLFBatchEvaluation.py × ParameterScan1D.py* ×		100 -	\wedge		\bigcap		
			<pre>import numpy as np import matplotlib.pyplot as plt import sys sys.path.append(r"C:\VLF-Python") from VLFBatchEvaluation import* path = r"C:\VLF-Python" ####################################</pre>	ies T[-1:0] %	80 - 60 -					
ame	Туре	10	9 IndextobeFound = '1' 0 Search Parameter='Stack #2 (Rectangular Grating) Surface #1 (Re	ienci	40 -					
pycache	File folder	11	1 Search_Parameter1='Stack #2 (Rectangular Grating) Surface #1 (N	e jij			\		\	
GratingEfficiency.os	OS File	12 13	<pre>2 Search_Parameter_array1=np.array((Search_Parameter,Search_Parameter) 3 Set default Value array=((1.85e-6,50))</pre>	te 🗂	20 -					
system.os	OS File	A 14	<pre>4 print(functionTest(path,IndextobeFound,Search_Parameter_array1,Search_P</pre>	et			\	/		
]initpy	Python sou	15	5 ####################################	71						\bigvee
] ParameterScan1D.py	Python sou	17	7 Search_Parameter='Stack #2 (Rectangular Grating) Interface #1	(R	۷1			-		
] ParameterScan2D.py	Python sou	18	<pre>8 Search_Parameter_array=np.array([Search_Parameter]) 9</pre>			ò ż	4	6	8	10
] SingleRun.py	Python sou	20	0 # define varying range				(Modulati	on Depth(µm)		
] VLFBatchEvaluation.py	Python sou	21	<pre>gratingDepthMax = 0.010 # given in millimeter by default gratingDepthMin = 0.0001 # given in millimeter by default</pre>							
sample_batch.bat	Windows B	23	3 stepNumber = 50							
] parameters.xml	XML Docur	24	<pre>4 stepSize = (gratingDepthMax - gratingDepthMin) / (stepNumber - 1) 5 efficiencies = np.zeros(stepNumber)</pre>)						
] results.xml	XML Docur	26 27 28 29	<pre>6 gratingDepth_array = np.zeros(stepNumber) 7 print(efficiencies) 8 # loop for input variables 9 for i in range(stepNumber): 0 #current value of variable</pre>							
		31	1 gratingDepth = gratingDepthMin + (i) * stepSize							

C

Parameter Scanning – Varying Multiple Parameters

- The basic Python file can be applied in a flexible way.
- For example, one can vary multiple variables and make a multi-dimensional scan over the parameter space.
- In this example, both the grating depth and the fill factor are varied, and again the diffraction efficiency of the -1st order is under investigation.

Parameter Scanning 2D – Varying Multiple Parameters

To use the example file, directly copy the Python file "ParameterScan2D.py" into the working folder, adjust the working path, and then execute it.

		LFBatchEvaluation.py × ParameterScan2D.py ×	
	1 2 3 4 5 6 7 8 9	<pre>import numpy as np import sys sys.path.append(r"D:\test") from VLFBatchEvaluation import* path = r"D:\test" ####################################</pre>	H
Name	10 Type 11 12	<pre>Search_Parameter1='Stack #2 (Rectangular Grating) Interface #1 Search_Parameter_array1=np.array((Search_Parameter,Search_Paramete Set default Value array=((1.85e-6.50))</pre>	T
pycache	File fold 🔺 13	print(functionTest(path,IndextobeFound,Search_Parameter_array1,Set	
GratingEfficiency.os	OS File 14 15	IndextobeFound = '1'	
≼ system.os	OS File 16	Search_Parameter='Stack #2 (Rectangular Grating) Interface #1 (F	
initpy	Python 17 18	Search_Parameter1='Stack #2 (Rectangular Grating) Interface #1 Search_Parameter_array=np.array((Search_Parameter_Search_Parameter	
ParameterScan1D.py	Python 19	# define varying range	
ParameterScan2D.py	Python 20	<pre>gratingDepthMax = 0.010 # given in millimeter by default gratingDepthMin = 0.0001 # given in millimeter by default</pre>	0
SingleRun.py	Python source fil	<pre>stepNumberDepth = 25</pre>	2 4
VLFBatchEvaluation.py	23 Python sour24 fil	<pre>stepSizeUeptn = (gratingUepthMax - gratingUepthMin) / (stepNumberL slitWidthMax = 80 # given in %</pre>	Modul
sample_batch.bat	Windows Batch F	ile slitWidthMin = 20 # given in %	a substance
parameters.xml	XML Docum@nt	<pre>stepSizeSlit = (slitWidthMax - slitWidthMin) / (stepNumberSlit - 1</pre>)
results.xml	XML Document	<pre>efficiencies = np.zeros((stepNumberDepth,stepNumberSlit)) gratingDepth_array = np.zeros((stepNumberDepth,stepNumberSlit)) elitWidth_array = np.zeros((stepNumberDepth_stepNumberSlit))</pre>	
		<pre>print(efficiencies) # Loop for input variables</pre>	
	33	for i in range(stepNumberDepth):	

title	Cross-Platform Optical Modeling and Design with VirtualLab Fusion and Python
document code	CPF.0002
version	2.0
toolbox(es)	(depending on situation; Grating Toolbox used for this example)
VLF versionPython version	VirtualLab Fusion 2020.2 (Build 2.22)Python 3.7.1
category	Feature Use Case
further reading	 Cross-Platform Optical Modeling and Design with VirtualLab Fusion and MATLAB