
Cross-Platform Optical Modeling and Design with

VirtualLab Fusion and Python

Abstract

VirtualLab Fusion allows external access

to its solvers. This is helpful if data

processing or optimization tools other

than those of VirtualLab should be used.

Via the standard batch mode, we

demonstrate how to use Python to trigger

VirtualLab in the background to run

optical simulations and output their

results which can then be further

processed and visualized with Python's

capabilities. As example rigorous grating

analyses and parametric scanning are

shown.

2

Workflow Overview

VirtualLab Fusion

- optical setup definition

- kernel simulation engine

Batch Mode Files

- execution of simulations

- optical parameters and

simulation result storage

Python

- interactive access to

batch mode files

- external mathematical

functions and tools

3

cross-platform

simulation

batch file, xml files, ...

Define Optical Setup in VirtualLab Fusion

n=1.45

h

d

fd
input plane wave
- wavelength 1060nm

- polarization TM

air

-1st order

0th order

Parameter Value

grating depth h 1.85 µm

grating period d 1060 nm

fill factor f 50 %

initial grating parameters

corresponding optical setup

generated in VirtualLab

4

Create Batch Mode Files

• First we create batch mode files for a

selected optical setup.

• In the selected folder, three new files are

generated

1. parameters.xml

xml file containing all parameters of the

optical setup from VirtualLab

2. sample_batch.bat

batch file containing commands intended

to be executed

3. system.os

os file (VirtualLab file format) containing

the original optical setup

5

Batch File Content

The batch file can be opened with any editor like

program.

After the generation of the batch file, there will be

as many commands listed to trigger a VirtualLab

Fusion simulation as simulation engines are

available in the optical setup document, e.g.

• Field Tracing

• Classic Field Tracing

• Ray Tracing

• Ray Tracing System Analyzer

Typically not all type of simulations are required and

also not all optional arguments, e.g. the generation

of a subfolder where the results are input.

The command looks like the following:

virtuallab.exe -performLPD {1} {2} [-parameters {3}] [-engine {4}] [-subfolder]

Modify Batch File

7

[original batch file]

[modified batch file]

1. delete the line for

Classic Field Tracing

2. delete subfolder option

Open batch file (e.g. with an editor)

1. choose simulation engine

(in this example only the Grating Order Analyzer is used)

2. delete the output option

(the presented example works without subfolder)

Execute Simulation Using Batch File

8

before executing batch file

after executing batch file

• It is recommended to execute the batch file

first (e.g. by double click in the MS

Explorer window), as a pre-check for the

complete workflow.

• After execution, a new file is generated

− results

(xml file containing the result values)

• One may also open the result.xml file to

check the result values.

Checking Simulation Results Generated by Batch File

• Results in VirtualLab Fusion • Results in xml file (can be viewed e.g. in

simpled text editor or internet browser)

9

Execute Simulation Using Python (via Batch)

• A basic Python function has been prepared

for executing the batch file and interacting

the related xml files.

• Copy "VLFBatchEvaluation.py" file

directly to the working folder.

10

Execute Simulation Using Python (via Batch)

• In this example, one can execute the

Python function below
FunctionTest(Path,IndexToBeFound,
Search_Parameter_ ...)

• A Python file "SingleRun.py" is prepared

for executing the function.

In this example, the -1st order efficiency is

displayed after executing the function

-1st diffraction order

11

Parameter Scanning – Varying Single Parameter

• The basic Python file can be used as a

sub-function in another Python file as well.

• As an example, we demonstrate how to

scan a selected parameter in the optical

setup and to check the influence on the

result.

• In this example the grating depth is varied,

and the transmitted diffraction efficiency of

the -1st order is evaluated.

grating parameters

input plane wave
- wavelength 1060nm

- polarization TM

12

Parameter Value

grating depth h [0.1; 10.0] µm

grating period d 1060 nm

fill factor f 50 %

Parameter Scanning – Varying Single Parameter

13

To use the example file, directly copy the Python file "ParameterScan1D.py" into the working

folder, adjust the working path, and then execute it.

Parameter Scanning – Varying Multiple Parameters

• The basic Python file can be applied in a

flexible way.

• For example, one can vary multiple

variables and make a multi-dimensional

scan over the parameter space.

• In this example, both the grating depth and

the fill factor are varied, and again the

diffraction efficiency of the -1st order is

under investigation.

14

Parameter Value

grating depth h [0.1; 10.0] µm

grating period d 1060 nm

fill factor f [20; 80] %

grating parameters

input plane wave
- wavelength 1060nm

- polarization TM

Parameter Scanning 2D – Varying Multiple Parameters

15

To use the example file, directly copy the Python file "ParameterScan2D.py" into the working

folder, adjust the working path, and then execute it.

Document Information

www.LightTrans.com16

title Cross-Platform Optical Modeling and Design with VirtualLab Fusion and Python

document code CPF.0002

version 2.0

toolbox(es) (depending on situation; Grating Toolbox used for this example)

− VLF version

− Python version

− VirtualLab Fusion 2020.2 (Build 2.22)

− Python 3.7.1

category Feature Use Case

further reading − Cross-Platform Optical Modeling and Design with VirtualLab Fusion and MATLAB

https://www.lighttrans.com/index.php?id=1791

