

Configuration of Grating Structures by Using Interfaces

Abstract

Edit	Stack					×
						* dase Block
	Index	z-Distance	z-Position	Interface	Subsequent Medium	Com
►	1	0 m	0 m	Plane Interface	Silicon(amorphous)-a-	Enter your comment
	2	10 µm	10 µm	Transition Point List In	Air in Homogeneous M	Enter your comment
<						>
V.	/alidity: /eriod	9		А	dd Insert	Delete
	Stack F	Period is	Dependent f	rom the Period of Interfac	ce v with Index	2
	Stack F	Period		10 µm		
3	0	Tools 縃	•		OK Cancel	Help

Optical grating structures are widely used for several applications such as spectrometers, near-eye display systems, etc. VirtualLab Fusion provides rigorous analysis of arbitrary grating structures in an easy way by applying the Fourier modal method (FMM). In the Grating Toolbox, the grating structure can be configured by using various interfaces or/and media within a stack. The user interface to set up the geometry of a stack is user friendly and can be used to generate even more complex grating structures. In this use case the configuration of grating structures based on interfaces is explained.

This Use Case Shows ...

- How to configure grating structures in Grating Toolbox by using interfaces, e.g.:
 - rectangular grating interface
 - transition point list interface
 - sawtooth grating interface
 - sinusoidal grating interface
- How to change advanced options & inspect defined structure before calculation.

Grating Toolbox Initialization

- Initialization
 - Start →
 Grating →
 General Grating Light Path Diagram
- note: For usage of special type of grating, e.g. with rectangular shape, the specific light path diagram can be chosen directly.

Grati	ng Laser Lighting Waveguide Resonator * *	About V 🖓 License
2D	Gratings	
20	General Grating Light Path Diagram	
200	Rectangular Grating Light Path Diagram	n
R.	Sawtooth Grating Light Path Diagram	
R	Sinusoidal Grating Light Path Diagram	
2	Triangular Grating Light Path Diagram	
2	Volume Grating Light Path Diagram	
200	Programmable Grating Light Path Diagr	am
R	Sampled Grating Light Path Diagram	
R	Transition Point List Grating Light Path	Diagram
3D	Gratings	
R	General Grating Light Path Diagram	
20	Pillar Grating Light Path Diagram	
LLC	A Results	
Ŕ	LLGA Results Generator	

Grating Structure Settings

- First, the thickness and the material of the substrate (*Base Block*) have to be defined.
- In VirtualLab grating structures are defined in a so called stack.
- Stacks can be attached to either one or both sides of the substrate.

• For example, a stack on the first interface is chosen.

Stack Editor

- In the *Stack Editor* interfaces can be added or inserted from catalog.
- The catalog of VirtualLab provides several types of interfaces. All of them can be used to define a grating.

х

Tools 🍟 🗸 Show Preview

OK Cancel Help

Definition Type Templates
Apphencal Interface
Combined Interface
Combined Interface
Concical Interface
Cyclindical Interface
Polynomial Interface
Polynomial Interface
Rectangular Grading Interface
Sanvotof Grading Interface
Transiton Port Lait Interface
Transplar Grading Interface

Filter by.

1 / X

Edit Stack					×
Index	z-Distance	z-Position	Interface	Subsequent Medium	Com
<	•				>
Validity: Period				Add Insert	Delete
Stack	Period is	Independent	t from Interface/Media	Period V	
Stack	Period		10 µm		
M	Tools 🎢	•	E	OK Cancel	Help

Rectangular Grating Interface

- One possible interface is the rectangular grating interface.
- This type of interface is appropriate for the configuration of simple binary structures.
- In this example, a grating made of silver is on a glass substrate.
- For this purpose, an additional plane interface was added in order to separate the grating structure from base block.
- In the view of the stack editor, different materials are indicated by other colors based on their index of refraction (dark means higher).

Edit	Stack					×
						× d Base Block
	Index	z-Distance	z-Position	Interface	Subsequent Medium	Com
	1	0 mm	0 mm	Plane Interface	Silver-Ag_(1997+1985	Enter your commen
	2	0 mm	0 mm	Rectangular Grating.	. Air in Homogeneous	Enter your commen
<u> </u> <						>
V P	alidity: (eriod	9			Add Insert	Delete
	Stack F	Period is	Dependent f	from the Period of Interf	ace \checkmark with Index	x 2
	Stack F	Period		10 µm		
3	0	Tools 🇌	•		OK Cancel	Help

Rectangular Grating Interface

- Please note: the order of the interfaces is always counted from the surface of the substrate.
- The selected interface is highlighted red in the view.
- Further, the medium in front of the grating (means behind last interface) can not be defined here. It is automatically taken from the material in front of the grating component.
- This material can be changed in the *Light Path Editor*.

5: Ligł	ht Pa	ath Editor (Light Path Diagram #	5)		-			
D	9	Path Cetec	tors	Analyzers	<u> </u>	ogging		1
		Start E	lement			Target Element	Linkage	
Inde	lex	Туре	Channel	Medium	Index	Type	Propagation Method	On/O
	0	Ideal Plane Wave		Air in Homogeneous Mediu	- 1	General Grating 2D	None	On
	1	General Grating 2D	Т	Air in Homogeneous Medi.				
] To	ools	₩ .				Simulation Engine Classic Fiel	d Tracing V	Go!

Edit	Stack								×
									<mark>*</mark> Base Block
	Index	z-Distance	z-Position	Interface		Subseque	nt Medium		Corr
	1	0 mm	0 mm	Plane Interface		Silver-Ag_	(1997+1985)	Enter	your commer
Þ	2	0 mm	0 mm	Rectangular Gra 📔 🥖 🋐	ting	Air in Hom	ogeneous Q	Enter	your commer
<									>
V.	alidity: eriod	9		[А	dd	Insert		Delete
	Stack F	Period is Period	Dependent f	from the Period of I	nterfac	xe ∨	with Index	2	×
3	0	Tools 縃	-			ОК	Cancel		Help

Rectangular Grating Interface

- The Stack Period allows to control the period of the whole configuration.
- This period is also taken for the periodic boundary conditions of the FMM algorithm.
- In case of simple grating structures, it is recommended to choose the option *Dependent from Period of Interface* and select the proper index of the periodic interface.

Edit	Stack					×
						× ^x Base Block
	Index	z-Distance	z-Position	Interface	Subsequent Medium	Com
	1	0 mm	0 mm	Plane Interface	Silver-Ag_(1997+1985	Enter your commen
•	2	0 mm	0 mm	Rectangular Grating	Air in Homogeneous	Enter your commen
<						>
v	alidity:	9			Add Insert	Delete
F	eriod			,	moort	Delete
	Stack F Stack F	^p eriod is ^p eriod	Dependent f	from the Period of Interfa	ce v with Index	2
5	0	Tools 🇌	•		OK Cancel	Help

Rectangular Grating Interface Parameters

- The rectangular grating interface is defined by the following parameters
 - slit width (absolute or relative)
 - grating period
 - modulation depth
- A lateral shift and rotation can be set optionally.

tructure	Height Discontinuities	Scaling of Elementary	/ Interface	Periodizatio	n	
Special F	Rectangular Grating Val	ues				
Slit Wid	lth ~	5 µm				
c	Castin - Values					
Extensi	ion					
Grati	ing Period	10 µm	Modulation	n Depth		1 µm
D	,					
Later	n ral Shift	0 mm	Rotation A	nale		0°
Edici	di onne		Hotation A	ingro		-

- In the propagation menu several advanced options are available.
- The propagation method tab allows to edit the accuracy settings of the FMM algorithm.
- Either the numbers of considered total orders or evanescent orders can be set.
- This might be useful, if metallic gratings are considered.
- In contrast, in case of dielectric gratings, the default setting will be sufficient.

Edit General Grating	g 2D Component	×
Coordinate	Component Propagation Fourier Modal Method V	dit
Systems	Interface Stack Medium	
	Plane Surface Sinusoidal Grating Fused Silica in	Homoge
k	1 Fourier Modal Metho V Fourier Modal Metho Fourier Modal M	etho 🗸
Panition /	Plane Surface Stack Fused_Silica in	Homoge
Orientation	2 Fourier Modal Metho V	
	Edit Fourier Modal Method (RCWA)	×
	Numerical Parameter Structure Decomposition	
Structure	Number of Orders	
	O Number of Diffraction Orders	
	 Number of Evanescent Orders (Considering All Propagating Orders) 	50 🜩
Propagation	Information	
	11 propagating orders (for perpendicular incident). 61 diffraction orders are used for calculation.	
	Tools of	
Validity: 🕑	Preview Wavelength 532 nm OK Cancel	Help

- The *Advanced Settings* tab provides information about the decomposition of the structure.
- The Layer Decomposition and Transition Point Decomposition settings can be used to adjust the discretization of the structure. The default settings are appropriate for nearly all grating structures.
- Further, information about the number of layers and transition points are provided.
- The *Decomposition Preview* button provides a depiction of the structure data which are used for the FMM calculation. The refractive index is illustrated by a color scale.

Edit Fourier Modal Method (RCWA)	\times
Numerical Parameter Structure Decomposition	
Layer Decomposition	
 Automatic 	
Accuracy Factor 1	
O Manual	
Number of Layers (First Stack)	
Overall Thickness 1 µm	
Transition Point Decomposition	
Automatic	
Accuracy Factor 1	
O Manual	
Number of Points	
O Point Distance	
Period 2 µm	
Information Maximum total number of layers: 21 Minimum transition point distance: 40 nm	
Remove Redundant Data Decomposition Preview	
OK Cancel Help	

Transition Point List Interface

Transition Point List Interface

- Another type of interface which can be used for the configuration of gratings is the transition point list interface.
- This interface allows to configure a structure based on height values for different positions inside the period.
- Again, a plane interface is used to separate the grating material or medium from the one of the substrate.

Edit	Stack								×
									* 🐧 Base Block
	Index	z-Distance	z-Position	Interface)	Subseque	ent Medium		Com
	1	0 mm	0 mm	Plane Interface		Silicon(am	orphous)-a-	Enter yo	ur commen
•	2	10 µm	10 µm	Transition Poin	t List	Air in Hom	ogeneous	Enter yo	ur commen
<									>
V P	alidity: eriod	9			А	dd	Insert	De	elete
	Stack F	^p eriod is	Dependent f	from the Period of	Interfac	ce v	with Index	2	-
	Stack F	Period		10 µm					
3	0	Tools 🎢	-			ОК	Cancel		Help

Transition Point List Parameters

- The transition point list interface is defined by a list which contains the data of x-positions and heights.
- The *Upper Limit* has to be set to a value larger than half of the desired grating period, but is set automatically in case of periodic structures.

ucture Height Discontinuities Scaling of Elementary Interface Periodization x-Position Height 10 µm -2 µm 0 mm -1 µm 1 µm 3 µm 3 µm 3 µm 4.5 µm 4.5 µm 0 mm 0 mm Set Data Array Show Data Array 2 µm 0 mm 1 µm 4.5 µm 4.5 µm 0 mm 0 mm 0 mm Interpolation Metho Constant Interval Upper Limit 5 µm Invert Heights Shift Positions ner Definition Area Interpolation Metho Constant Interval State and Shape Rectangular Shape Rectangular Size 10 µm Effect on Field Outside of Definition Area Elliptic Size 10 µm Effect on Field Outside of Definition Area Field Passes Plane Interface Field Passes Plane Interface Interface Plane Specification Mode Image: Position Boundary Minimum 10 µm	ucture	Height Discontin					
x-Position Height -5 µm -2 µm -1 µm 1 µm 1 µm 2 µm 3 µm 4.5 µm 4.5 µm 4.9 µm 0 mm -1 µm -1 µm		neight Discontil	nuities	Scaling of Eler	mentary Interface	Periodization	
-5 µm 10 µm -2 µm 0 mm -1 µm 10 µm 3 µm 8 µm 4.5 µm 0 mm 4.9 µm 0 mm 4.9 µm 0 mm 10 µm 4.9 µm 0 mm 0 mm 10 µm 4.9 µm 0 mm 0 mm 10 µm 0 mm 10 µm 10 µm 10 µm 10 µm Size 10 µm Effect on Field Outside of Definition Area 0 Field Passes Plane Interface 0 Field Passes Plane Interface 10 µm Position of Surrounding Interface Plane 10 µm 2 - Position -10 µm	х-г	osition	н	eight			Set Data Array
-1 µm 10 µm 1 µm 2 µm 3 µm 8 µm 4.5 µm 0 mm 0 mm 0 mm 4.9 µm 0 mm 0 mm 0 mm 1 µm 0 mm 0 mm 0 mm 0 field passes 0 field passes 0 field passes 0 fiel		-5 µm		10 μm 0 mm			Show Data Array
1 μm 2 μm 3 μm 8 μm 4.5 μm 0 mm 0 mm 0 mm 4.9 μm 0 mm 0 mm 0 mm 0 finition Area 10 μm Size 10 μm 10 μm Size 10 μm 10 μm Effect on Field Outside of Definition Area Field Passes Plane Interface Field Passes Plane Interface Field is Absorbed Position of Surrounding Interface Plane Image: Costion for the state of the state		-1 μm		10 µm			Show Data Anay
3 μm 8 μm 4.5 μm 0 mm 4.9 μm 0 mm 0 mm 0 mm 10 pm 10 µm x 10 µm 2 motion of Sumounding Interface Plane 0 pef, Area 0 modal y Minimum 0 persition 0 persition 10 µm		1 µm		2 µm			📝 Add Datum
4.9 μm 0 mm 4.9 μm 0 mm Interpolation Method Constant Interval Upper Limit 5 μ Invert Heights Shift Positions nner Definition Area Image: Shift Positions Size and Shape Rectangular Size and Shape Rectangular Size 10 μm Effect on Field Outside of Definition Area O Elliptic Size 10 μm Effect on Field Outside of Definition Area O Elliptic Field is Absorbed Image: Specification Mode Image: Specification Mode Boundary Minimum Image: Specification Image: Specification Image: Tools State Validity: Specification OK		3 μm		8 μm			🔲 New Data Set
Interpolation Metho Constant Interval Upper Limit 5µ Invert Heights Shift Positions Inner Definition Area Size and Shape Shape Shape Shape Shape Shape Shape Shape Shape Size 10 µm x 10 µm Effect on Field Outside of Definition Area Size 10 µm x 10 µm Effect on Field Outside of Definition Area Size State Shape Shee Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Size 10 µm x 10 µm		4.5 μm 4.9 μm		0 mm			
Interpolation Metho Constant Interval Upper Limit 5 u Invert Heights Shift Positions Invert Heights Shift Positions Invert Heights Shift Positions Size and Shape Shape Rectangular O Elliptic Size 10 µm x 10 µm Effect on Field Outside of Definition Area Invert Heights Shift Position Size 10 µm x 10 µm Invert Heights Shift Position Size 10 µm x 10 µm							
Interpolation Metho Constant Interval Upper Limit 5 i Invert Heights Shift Positions Invert Heights Shift Positions Invert Heights Shift Positions Invert Heights Shift Positions Size and Shape Shape Rectangular O Elliptic Size 10 µm x 10 µm Effect on Field Outside of Definition Area Field Passes Plane Interface Field Passes Plane Interface Field is Absorbed Position of Surrounding Interface Plane Specification Mode I Boundary Minimum z-Position 10 µm Validity: O OK Cancel Help							
Invert Heights Shift Positions Size and Shape Image: Constant Interval Size and Shape Image: Constant Interval Size and Shape Image: Constant Interval Size 10 µm Image: Constant Interval Size 10 µm Image: Constant Interval Image: Constant Interval Image: Constant Interval							nterpolation Metho
Upper Limit 51 Invert Heights Shift Positions nner Definition Area Image: Shape State 10 µm Size 10 µm Effect on Field Outside of Definition Area Image: Field Passes Plane Interface Field Passes Plane Interface Image: Field Passes Plane Interface Position of Sumounding Interface Plane Image: Field Plane Specification Mode Image: Field Plane Image: Position -10 µm Validity: OK							Constant Interval
Invert Heights Shift Positions Invert Heights Shift Position Invert Heights Shift Po							Jpper Limit
Invert Heights Shift Positions						U	5,
Invert Heights Sint Positions Invert Heights Sint Positions Size and Shape Shape Rectangular O Elliptic Size 10 µm x 10 µm Effect on Field Outside of Definition Area Field Passes Plane Interface Field is Absorbed Position of Surrounding Interface Plane Specification Mode Boundary Minimum z-Position -10 µm Nativity Concellent Help				wort Hoighta	Shift Desitions		
nner Definition Area Size and Shape Shape Nape Rectangular D Liptic Size 10 µm x 10 µm Effect on Field Outside of Definition Area Field Passes Plane Interface Field is Absorbed Position of Surrounding Interface Plane Specification Mode Boundary Minimum Z-Position 10 µm Validity: OK Cancel Help							
Size 10 µm x 10 µm Effect on Field Outside of Definition Area © Field Passes Plane Interface O Field is Absorbed Position of Surrounding Interface Plane Specification Mode Boundary Minimum z-Position -10 µm Mainterface Validity: Q OK Cancel Help	nner Defi	nition Area 📑	_				
Effect on Field Outside of Definition Area	nner Defi Size and Shape	nition Area <mark>i</mark> I Shape	Rect	tangular			
Effect on Field Outside of Definition Area	Size and Shape	nition Area 🚺 I Shape ((Rect 	tangular	⊖ Elliptic	10	
 Field Passes Plane Interface Field is Absorbed Position of Surrounding Interface Plane Specification Mode Boundary Minimum z-Position 10 µm OK 	Inner Defi Size and Shape Size	nition Area 👔 I Shape (() Rect	tangular 10 µm) Elliptic	10 µm	
Position of Surrounding Interface Plane Specification Mode Boundary Minimum z-Position -10 µm Main Tools & Validity:	Inner Defi Size and Shape Size Effect or	nition Area i I Shape ([n Field Outside o	Rect f Definit	tangular 10 μm ion Area	O Elliptic	10 µm	
Position of Surrounding Interface Plane Specification Mode Boundary Minimum z-Position 10 µm 0 z-Position	Inner Defi Size and Shape Size Effect or Fie	nition Area I Shape (The Field Outside of Id Passes Plane	Rect f Definit e Interfa	tangular 10 μm ion Area ace	O Elliptic	10 µm	► \
Specification Mode	Inner Defi Size and Shape Size Effect or Infect or Fie	nition Area Shape Field Outside of Id Passes Plane Id is Absorbed	Rect f Definit e Interfa	tangular 10 μm ion Area ace	O Elliptic	10 µm	.
Z-Position -10 µm	Inner Defi Size and Shape Size Effect or Fie Positi	nition Area I Shape () In Field Outside o Id Passes Plane Id is Absorbed ion of Surroundir	Rect f Definit e Interfa ng Interf	tangular 10 μm ion Area ace iace Plane	O Elliptic x	10 µm	Def.
z-Position -10 µm 0 z-Position	Inner Defi Size and Shape Size Effect or © Fie Positi Spec	nition Area I Shape () In Field Outside of Id Passes Pland Id is Absorbed ion of Surroundir iification Mode	Rect f Definit e Interfa ng Interf	tangular 10 μm ion Area ace iace Plane	O Elliptic	10 µm	Def. Area
0 z-Position	Inner Defi Size and Shape Size Effect or Infection Fie Positi Spec	nition Area	Rect f Definit e Interfa ng Interf y Minimi	tangular 10 μm ion Area acce iacce Plane iace Plane	O Elliptic x	10 µm	Def. Area
Tools & Validha OK Cancel Help	Inner Defi Size and Shape Size Effect or Fie Fie Positi Spec z-Po	nition Area	Rect f Definit e Interfa ng Interf y Minimu	tangular 10 µm ion Area acce iacce Plane i um v -10 µm	O Elliptic x	10 µm	Def, Area
Tools & Validity:	Inner Defi Size and Shape Size Effect or Fie Fie Spec z-Po	nition Area () Shape () I Shape () I Shape I Sha	Rect f Definit e Interfa ng Interf y Minim	tangular 10 μm ion Area acce iace Plane i um -10 μm	O Elliptic x	10 μm	Def. Area
	Inner Defi Size and Shape Size Effect or © Fie Positi Spec z-Po	nition Area	Rect	tangular 10 μm ion Area acce iace Plane i um ν -10 μm	O Elliptic x	10 μm	Def. Area

Transition Point List Parameters

- The period of this interface has to be set in the *Periodization* tab.
- Here, the periods in x- and ydirection can be defined.
- The settings of the inner and outer definition area can be neglected in this case, because the extension of the interface is already truncated by the periodic boundary conditions.

Period	10	µm x		10 µm
uter Definition Ar Size and Shape	ea 🚹			
Shape	Rectangular	🔿 Elli	iptic	
Size	30 µm	x	30 µm	
Effect on Field O	utside of Definition Area			
Field Passe	es Plane Interface			-
O Field is Abs	sorbed			
Position of Su	mounding Interface Plane		\rightarrow	⇒ \
Specification	Mode			Def.
F	Boundary Minimum 🗸	1	-	Area
z-Position	-1 um	1		
			0 2	-Position

 Again, the data of the decomposed structure can be adjusted and investigated on the advanced settings tab page.

Period: 10 µm

Tools 🍟 🚽

[m]

 \times

v

0

00

N -

<

Edit General Grating 2D Component

X

Sinusoidal Grating Interface

Sinusoidal Grating Interface

- Another type of interface which can be used for the configuration of gratings is the sinusoidal grating interface.
- This interface allows to configure gratings with a smooth shape of a sinusoidal function.
- If a single interface is used to describe the grating structure, the materials are chosen automatically:
 - material of ridges: material of substrate
 - material of grooves: material in front of grating

Sinusoidal Grating Interface Parameters

- The sinusoidal grating interface is also defined by the following parameters:
 - grating period
 - modulation depth
- A lateral shift and rotation can be set optionally.
- As this is a grating interface (likewise to the rectangular and sawtooth one) no periodization has to be chosen.

Edit Sinus	oidal Grating Interface					×
Structure	Height Discontinuities	Scaling of Elementary	y Interface	Periodization	ı	
Common	Grating Values					
Extens	sion					
Grat	ting Period	10 µm	Modulatio	n Depth		1 µm
Positio	n					
Late	ral Shift	0 mm	Rotation A	Angle		0°
		\sim				
		7				
	<u> </u>	<u>/</u>				
	Period 🕻	Optical Axis	5			
		\				
		オ				
	K					
	<	→				
	Modulation	Depth				
1	Tools ∰↓	Validity: 🕑	OK	Car	ncel	Help

Sinusoidal Grating Interface Parameters

- The sinusoidal grating interface is also defined by the following parameters:
 - grating period
 - modulation depth
- A lateral shift and rotation can be set optionally.
- As this is a grating interface (likewise to the rectangular and sawtooth one) no periodization has to be chosen.

Edit Sinuso	oidal Grating Interface					×
Structure	Height Discontinuities	Scaling of Elementary	Interface	Periodization	1	
Common	Grating Values					
Extens	ion					
Grat	ing Period	10 µm	Modulation	n Depth		1 µm
Position	n					
Later	ral Shift	0 mm	Rotation A	ngle		0 °
I	Tools ∰→	Validity: 🕑	OK	Can	icel	Help

 Again, the data of the decomposed structure can be adjusted and investigated in the advanced settings tab.

Edit General Grating 2D Component

K

Coordinate

Systems

Component Propagation

Interface

Fourier Modal Method

Edit Fourier Modal Method (RCWA)

X

X

Edit

 \sim

 If the number of layers is increased (e.g. by a factor of 2), the discretization becomes less rough.

Period: 10 µm

Tools 🎢 🗸

00

<u>ن</u> [m 1]

N

<

 \times

v

0

Sawtooth Grating Interface

Sawtooth Grating Interface

- Another type of interface which can be used for the configuration of gratings is the sawtooth grating interface.
- This interface allows to configure gratings with blazed structure.
- If a single interface is used to describe the grating structure, the materials are chosen automatically:
 - material of ridges: material of substrate
 - material of grooves: material in front of grating

Sawtooth Grating Interface Parameters

- The sawtooth grating interface is also defined by the following parameters:
 - grating period
 - modulation depth
- Further, the direction of the blaze can be adjusted by setting the inclination.
- A lateral shift and rotation can be set optionally.
- As this is a grating interface (likewise to the rectangular and sinusoidal one) no periodization has to be chosen.

Special	Height Discontine	uities Scaling of Elementary	Interface	Periodization	
Inclina	tion (Height Increases with x	O	Height Decreases with	x
Common	Grating Values				
Extens	ion				
Grat	ting Period	10 µm	Modulatio	n Depth	1 µm
Positio	n				
Late	ral Shift	0 mm	Rotation A	Angle	0°
Period Optical Axis					
	Period	Optical Ax	is		

 Again, the data of the decomposed structure can be adjusted and investigated in the advanced settings.

Period: 10 µm

Tools 🎢 🗸

00

6 [md]

N

 \times

 \sim

Edit General Grating 2D Component

X

Remark on the Position of the Detector

Remark on the Detector Position

- In VirtualLab the detector is located subsequent to the substrate in air by default.
- This is necessary if the grating is included in a complex optical setup.
- However, the perfect plane and parallel substrate may cause some interference effects, which not occur in reality.
- Thus, for calculation of just grating efficiencies it is appropriate to set the detector inside the substrate material (likewise to most of grating evaluation software).
- This avoids the undesired influence of those interference effects.

Index 0	x Type	Jaday Turas Channel Medium Index 1						t Elema
0			Channel	/	Medium	Index		Туре
	U Ideal Plane Wave		-	Air in Hom	ogeneous Medi	1	General Gra	ating 2
	1 General Grating 2D		Т	Air in Homogeneous Medi				
Too	ols 🎢 🗸	~	~~_~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Simulatio	on Engi
	ols 🐐 - 1: Light Path Editor Path	(D:\user\ Detector	\\UseC	ase.Con	gurationGra	ating.Us	Simulatic Simula	es_Sa
	ols 🐐 - 1: Light Path Editor Path	(D:\user\ Detector	\UseC ors ≪ ement	ase.Con	gurationGra	ating.Us	Simulatic singInteface Logging Targe	es_Sa
Index	ols M + 1: Light Path Editor Path x Type	(D:\user\ Detector Start Ele	\UseC ors	ase.Con	gurationGra	ating.Us	Simulatic ingInteface Logging Targe	es_Sa t Elem
	I: Light Path Editor Path Y Type Ideal Plane Wave	(D:\user\ Detector Start Ele	\UseCors ement Channel	ase.Con	gurationGra	ating.Us	Simulatic ingInteface Logging Targe General Gra	es_Sa t Elem <i>Typ</i> ating 2

title	Configuration of Grating Structures by Using Interfaces
document code	GRT.0004
version	1.2
edition	VirtualLab Fusion Advanced
software version	2020.2 (Build 1.116)
category	Feature Use Case
further reading	 <u>Configuration of Grating Structures by Using Special Media</u> <u>Blazed Grating Analysis by Fourier Modal Method</u> <u>Ultrasparse Dielectric Nanowire Grid Polarizers</u>