Channel Setting for Non-Sequential Tracing
Abstract

In VirtualLab Fusion, non-sequential tracing is enabled by adjusting the channels of each surface. This use case shows the definition of channels by using an example of a waveguide with two surfaces. Channels of each surface are adjusted and the consequences of the settings are shown. Furthermore, on a surface, grating regions can be defined. Setting of the region channels are not necessary to be identical with the surface channels. This use case shows how to set regions on a surface and how to adjust the channel configuration of a region.
Modeling Task

- how to adjust the channels on surface and region levels, and the consequences from these settings.
Surface Channels

- Initialization
 - Create a planar waveguide made of fused silica, with a thickness of 5mm, by using two plane interfaces without regions on them.
Surface Channels

- Initialization
 - Create a planar waveguide made of fused silica, with a thickness of 5mm, by using two plane interfaces without regions on them.
 - For better illustration, define an isolated Y-Axis Rotation of 30° for the waveguide.
Surface Channels

- Channel definition
 - There are four possible channels for each surface, at least one should be activated for the tracing.
 - Channels can be defined for each surface individually.
 - Different settings on channels leads to different tracing logic in VirtualLab.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/-</td>
<td>transmission (forward)</td>
</tr>
<tr>
<td>+/-</td>
<td>reflection (forward)</td>
</tr>
<tr>
<td>-/+</td>
<td>reflection (backward)</td>
</tr>
<tr>
<td>-/-</td>
<td>transmission (backward)</td>
</tr>
</tbody>
</table>
Surface Channels

Setting A

<table>
<thead>
<tr>
<th>Surface</th>
<th>+/+</th>
<th>+/-</th>
<th>-/-</th>
<th>-/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting B

<table>
<thead>
<tr>
<th>Surface</th>
<th>+/+</th>
<th>+/-</th>
<th>-/-</th>
<th>-/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting C

<table>
<thead>
<tr>
<th>Surface</th>
<th>+/+</th>
<th>+/-</th>
<th>-/-</th>
<th>-/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface Channels

Setting D

Note: an activated channel does not necessarily lead to corresponding light path(s). E.g., the
/- and -/+ channel of 2nd interface do not influence the tracing, because there is no backward incidence.
Region Channels

- Region(s) on surface
 - It is possible to define individual Regions on a surface and define their optical properties individually, including the channel settings.
Region Channels

• Region definition
 - Create a rectangular region on 1st surface.
 - Set the region size as 2.25mm × 2.25mm, and its center at -3.6mm along x-direction.
Region Channels

- **Region definition**
 - Create a rectangular region on 1st surface.
 - Set the region size as $2.25\text{mm} \times 2.25\text{mm}$, and its center at -3.6mm along x-direction.
 - Define this region as grating with single transmission order $T_0 = 50\%$, and single reflection order $R_0 = 50\%$, which makes a semi-reflective mirror.

Efficiencies are given with respect to incidence from back side; in this example, T and R corresponds to $-/-$ and $-/+$. channels respectively.
Region Channels

• Region definition
 - Set up the channels for this region, following the same rule as for the surfaces.

Note: region channels provide individual control in addition to surface channels
Region Channels with Grating

- Region definition
 - It is possible to define a diffractive grating on a given region.
Region Channels with Grating

- Region definition
 - It is possible to define a diffractive grating on a given region.
 - We add a rectangular region (2.25mm side length) on 2nd surface, centered at -9mm along x-direction.
Region Channels with Grating

• Region definition
 − It is possible to define a diffractive grating on a given region.
 − We add a rectangular region (2.25 mm side length) on 2nd surface, centered at -9 mm along x-direction.
 − Define an ideal grating with 1 µm period, and specified diffraction coefficients as $T_0 = 10\%$, $T_1 = 60\%$, $T_2 = 10\%$.
Region Channels with Grating

- Region definition
 - It is possible to define a diffractive grating on a given region.
 - We add a rectangular region (2.25 mm side length) on 2nd surface, centered at -9 mm along x-direction.
 - Define an ideal grating with 1 μm period, and specified diffraction coefficients as $T_0 = 10\%$, $T+1 = 60\%$, $T+2 = 10\%$.
<table>
<thead>
<tr>
<th>title</th>
<th>Channel Setting for Non-Sequential Tracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>MISC.0013</td>
</tr>
<tr>
<td>version</td>
<td>1.1</td>
</tr>
<tr>
<td>toolbox(es)</td>
<td>Starter Toolbox (Non-Sequential Extension), Waveguide Toolbox</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>7.4.0.49</td>
</tr>
<tr>
<td>category</td>
<td>Feature Use Case</td>
</tr>
</tbody>
</table>
| further reading | - [Non-Sequential Ray Tracing Analysis of Glass Plate](#)
- [Modeling of Etalon with Planar or Curved Surfaces](#)
- [Optimizing Waveguide Outcoupling Gratings for Uniform Multiple Channels](#) |