
How to Work with the C# Module and Example
(Computing the Deviation Between Two Fields)

Abstract

Offering maximum versatility for your
optical simulations is one of our most
central aims. Nowhere is this versatility
more apparent than in the Module: while
other programmable elements in
VirtualLab Fusion (sources, detectors,
components, etc.) have a predetermined
input and output type, the Module gives
the user total freedom of implementation.
One reason for that is the fact that it
functions outside the Optical Setup
document, so it is up to the user’s
discretion to decide on the input and
output of the code: this also means that
reading in and delivering the different file
types is fundamental.

2 www.LightTrans.com

Where to Find the Module

3

1

2

Writing the Code

4

The header of the
module. A list of usings is
included by default; add
more should the need for
them arise.

The main function of the
module should be

included between the
curly brackets for Run(),

as indicated. Any additional supporting
functions can be defined
in the same class, but
outside of the “Run”
environment.

After compilation (F6) or
an attempt to run the

module (F5) any
compilation errors are

shown here.

Writing the Code

• It is of particular importance for the Module to be familiar with the different data types
available in VirtualLab, and how to read them in and display them. Some useful examples:

− VL_GUI.AskForDouble() Prompts the user to enter a value for a double parameter. Also exists
for int and Complex.

− VL_GUI.WriteToMessagesTab() or WriteLineToMessagesTab() Displays a string in the
Messages tab. The first variant includes no carriage return. A return can be added manually at any
point by the user using the special character \n inside the string.

− VL_GUI.ShowDocument() Displays a graph of any class which implements the interface
IDocument. An example of this would be ComplexAmplitude or HarmonicFieldsSet.

− VL_GUI.SelectOpenField() Prompts the user to select an open document of type
ComplexAmplitude. There are similar options for other document types.

5

Writing the Code

− ComplexAmplitude Object designed to store a monochromatic, equidistantly sampled
complex amplitude (transversal distribution of field at a plane). It stores the ComplexField
for Ex and Ey, whether in globally polarized form (one common field function for both and
one Jones vector which is constant in the plane) or in locally polarized form (two different
functions for Ex and Ey). All other electromagnetic components can be computed from
those two on demand, as per Maxwell’s equations.

− HarmonicFieldsSet Object type designed to group several instances of
ComplexAmpltiude. For instance, a polychromatic field, which will contain one
ComplexAmpltiude per spectral sample.

− DataArray2D Contains the discrete values defining one or more generally complex
functions on a 2D support. These values can be equidistantly or non-equidistantly
sampled. The dimensions of both the function and its support are free for the user to
define. There exists also a 1D version of the data array.

6

Compiling & Running Your Module

7

Run

Com-
pile

Programming a C# Module That Computes the
Standard Deviation Between Two Fields

Standard Deviation

Given two sampled, complex functions f and g, defined on the x, y plane, the relative standard
deviation of g with respect to f is defined as

The computation of the absolute deviation would respond to the same expression but without the
normalization constant.

Sometimes it is of interest to allow for a complex constant to be multiplied onto g(x, y) so that the
value of the deviation is minimized. This allows us to compare just the shapes of the two
functions, without paying attention to the scale. The function implemented in VirtualLab for the
calculation of the deviation, which we shall use throughout this example, allows for both
possibilities (with and without scaling). The function delivers automatically the value of the
complex constant which minimizes the error.

9

Where to Find the Module

10

1

2

Test the Code!

11

using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;

using VirtualLab.Programming;
using VirtualLabAPI.Core.BasicFunctions;
using VirtualLabAPI.Core.Common;
using VirtualLabAPI.Core.DataVisualization;
using VirtualLabAPI.Core.FieldRepresentations;
using VirtualLabAPI.Core.Functions;
using VirtualLabAPI.Core.GeometryDescription;
using VirtualLabAPI.Core.LightPath;
using VirtualLabAPI.Core.Materials;
using VirtualLabAPI.Core.Modules;
using VirtualLabAPI.Core.Numerics;
using VirtualLabAPI.Core.Numerics.Region2D;
using VirtualLabAPI.Core.OpticalSystems;
using VirtualLabAPI.Core.Propagation;

namespace OwnCode {
public class VLModule : IVLModule {

public void Run() {

C# Module (Header)

Test the Code!

12

// Read in fields (reference field and field for analysis):
ComplexAmplitude caReference =

(ComplexAmplitude) (VL_GUI.SelectOpenField("Select reference field"));
ComplexAmplitude caAnalysis =

(ComplexAmplitude) (VL_GUI.SelectOpenField("Select field for analysis"));

// Declare the outputs:
double relativeDeviation;
double absoluteDeviation;
Complex scalingFactor;

// Compute deviation without scaling:
ComplexAmplitudeOperations.ComputeDeviation(

caAnalysis, // Field to be analyzed.
caReference, // Reference field.
false, // Whether scaling shall be applied or not.
out relativeDeviation, // The resulting relative deviation (Eq. 1).
out absoluteDeviation, // The resulting absolute deviation.
out scalingFactor, // The scaling factor (= 1 if without scaling).
InterpolationMethod.Nearest); // Interpolation method employed to match the sampling

// of the two fields.

C# Module (Run, I)

Test the Code!

13

// Display results in Messages window using custom
// support function (see below):
VL_GUI.WriteLineToMessagesTab("--Calculation WITHOUT scaling--");
Display(scalingFactor, relativeDeviation, absoluteDeviation);

// Compute deviation with scaling:
ComplexAmplitudeOperations.ComputeDeviation(

caAnalysis,
caReference,
true,
out relativeDeviation,
out absoluteDeviation,
out scalingFactor,
InterpolationMethod.Nearest);

// Display results in Messages window using
// custom support function (see below):
VL_GUI.WriteLineToMessagesTab("--Calculation WITH scaling--");
Display(scalingFactor, relativeDeviation, absoluteDeviation);

}

C# Module (Run, II)

Test the Code!

14

// For illustration purposes, we define a support function
// that delivers the values returned by the calculation to
// the Messages window
public void Display(Complex ScalingFactor, double RelativeDeviation, double AbsoluteDeviation)
{

VL_GUI.WriteToMessagesTab("Scaling factor: " + ScalingFactor.ToString() +
"\nRelative deviation: " + RelativeDeviation.ToString() +
"\nAbsolute deviation: " + AbsoluteDeviation.ToString());

}
}

}

C# Module (Support Functions)

Compile & Run Your Module

15

Com-
pile

Compile & Run Your Module

16

1

2

3
4

5

Document Information

title How to Work with the C# Module and Example (Computing the Deviation
Between Two Fields)

document code CZT.0101
version 1.0
toolbox(es) Starter Toolbox
VL version used for
simulations 7.4.0.49

category Feature Use Case

further reading
- Programming a Module That Smooths the Edge of a Structure
- Programming a Module That Computes the Standard Deviation between

Two Harmonic Fields

17 www.LightTrans.com

https://www.lighttrans.com/index.php?id=1445
https://www.lighttrans.com/index.php?id=1446

	How to Work with the C# Module and Example (Computing the Deviation Between Two Fields)
	Abstract
	Where to Find the Module
	Writing the Code
	Writing the Code
	Writing the Code
	Compiling & Running Your Module
	Programming a C# Module That Computes the Standard Deviation Between Two Fields
	Standard Deviation
	Where to Find the Module
	Test the Code!
	Test the Code!
	Test the Code!
	Test the Code!
	Compile & Run Your Module
	Compile & Run Your Module
	Document Information

