

# Analysis of Focal Plane Position as a Function of Numerical Aperture

#### Abstract



The focal length of a lens system may at first seem like a straightforward, immutable parameter of the component or lens system. There are, however, several aspects of the specific configuration in which a given lens is used which can affect the position of the focal plane: for instance, the fuller with light the aperture of the lens is, the higher the chance that aberrations may cause the focus to shift, compared with a more paraxial setup using the same lens. But then again, diffraction in systems with low F number will also displace the focus longitudinally with respect to the geometric prediction. In this use case, we use some programming in VirtualLab Fusion to ensure that our detector is always placed at the geometric focus of the lens system, and analyze how varying different parameters of the system can affect the position of the focal plane.

## **Task Description**

Note: ray color does not match wavelength.



With a spherical lens, the spherical aberration can cause the geometric focus to shift as the numerical aperture (NA) of the setup increases.

<u>**Task:</u>** Are there tools in VirtualLab Fusion to ensure that the detector is always automatically placed at the geometric focus, so that we can investigate the effect of the numerical aperture on focus position and spot size?</u>



## **Setting Up: Find Focus Position**





|                                                                                                                                                              | Edit Parameter Coupling                                         |                              |                                                               |                                                                           |                                                                                          | ×                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| r Use Parameter                                                                                                                                              | Parameter Specification<br>Setup the parameter(s) to be used as | input (independent variable) | and output (depend                                            | dent variable) of the                                                     | coupling snippet.                                                                        |                                                                      |
| Coupling 🐄                                                                                                                                                   | Filter by                                                       |                              |                                                               | ×                                                                         | Show Only L                                                                              | Jsed Parameters                                                      |
|                                                                                                                                                              | 1 2 * Object                                                    | Category                     | Parameter                                                     | Use in Snippet                                                            | Short Name                                                                               |                                                                      |
| Activate the <i>Parameter</i><br><i>Coupling</i> (it will be<br>highlighted in yellow<br>when it is active) and cli<br>on the cogwheel icon to<br>set it up. | ck                                                              |                              | Select th<br>involv<br>want to<br>this cas<br>the <i>z</i> co | ne param<br>ved in the<br>impose o<br>se, we jus<br>pordinate<br>Detector | eters that<br>constrain<br>on the syst<br>at want to c<br>of the <i>Un</i><br>with index | will be<br>its you<br>em (in<br>control<br><i>iversal</i><br>c 600). |
|                                                                                                                                                              | Help Validity:                                                  |                              |                                                               | < 1                                                                       | Back Next >                                                                              | Finish                                                               |

Edit the *Snippet* to implement the desired constraints. You can define additional parameters for your systems in the *Global Parameters* tab of the *Snippet*.



Here, we need the position detector the Pa Coupling needs to the focus finding define a global pa of type *il* DetectorIndex. Th coincide with the the detecto position we preselected for c

1 2 \*

| Here, we need to know                                      | Edit Parameter Coupling                                                                                                                           | ×                                                                                                           |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| the position of which detector the <i>Parameter</i>        | Snippet Specification<br>Define the snippet which does the actual parameter coupling.                                                             |                                                                                                             |
| <i>Coupling</i> needs to use for                           | Calidity:                                                                                                                                         |                                                                                                             |
| the focus finding, so we                                   | DetectorIndex                                                                                                                                     | 600 🗘                                                                                                       |
| efine a global parameter                                   |                                                                                                                                                   |                                                                                                             |
| of type <i>int</i> called                                  | Source Code Editor Source Code Editor Source Code Editor Source Code Editor Source Code Global Parameters Snippet Help Advanced Settings Source   | e Code Editor   e Code Global Parameters Snippet Help Advanced Settings                                     |
| DetectorIndex. This <b>must</b> coincide with the index of | 1                                                                                                                                                 | Areral Parameters       Type     Definiption       tectorIndex     Integer Value     Edit     Integer Value |
| the detector whose                                         | 29<br>30 ⊕ Base class to handle Global Parameters<br>64                                                                                           |                                                                                                             |
| position we previously                                     | 65                                                                                                                                                |                                                                                                             |
| selected for coupling.                                     | 67 Depublic Dictionary <string, double=""> GetOutpu</string,>                                                                                     | Add Remove 👕 🖶                                                                                              |
| Edit Parameter Coupling                                    | 69     #region Main method     DetectorPosition       70     // declare output:       71     Dictionary <string, double=""> returnValue</string,> | riable Name Material Add                                                                                    |
| Parameter Specification                                    | 72<br>73 // make copy of parent system:                                                                                                           | 全 早                                                                                                         |
| Setup the parameter(s) to be used as                       | 74 Lightpath internalCopyOfSystem = Paren<br>75                                                                                                   |                                                                                                             |
|                                                            | 76 // switch off parameter coupling in in<br>77 internalCopyOfSystem.UseParameterCoupl                                                            | bal Media                                                                                                   |
| Filter by                                                  | 78   // get the link to the detector which                                                                                                        | riable Name Medium Add                                                                                      |
| 1 2 * Object                                               | Check Consistency Validity:                                                                                                                       | Remove     Validity:     OK     Cancel     Help                                                             |
|                                                            |                                                                                                                                                   |                                                                                                             |

| Source Code       Global Parameters       Snippet Help       Advanced Settings         68       #region Main method       Parameters (Dictionary <string, (dictionary<="" (dictionary<string,="" <="" parameters="" th=""><th>paramotors</th></string,>                                                                                                                                                           | paramotors              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 68       #region Main method         69       #region Main method         70       // declare output:         71       Dictionary <string, double=""> returnValue = new Dictionary<string, double="">();         72       // make copy of parent system:         73       // make copy of parent system:         74       Lightpath internalCopyOfSystem = ParentSystem.Clone() as Lightpath;</string,></string,> | parameters              |
| 70       7/7 declare output:         71       Dictionary <string, double=""> returnValue = new Dictionary<string, double="">();         72       73         73       // make copy of parent system:         74       Lightpath internalCopyOfSystem = ParentSystem.Clone() as Lightpath;</string,></string,>                                                                                                      | parametere              |
| 73       // make copy of parent system:         74       Lightpath internalCopyOfSystem = ParentSystem.Clone() as Lightpath;                                                                                                                                                                                                                                                                                      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | ig the Global           |
| 76 // switch off parameter coupling in internal copy:<br>77 internalCopyOfSystem.UseParameterCoupling = false;<br>79                                                                                                                                                                                                                                                                                              | rs defined by           |
| <pre>// get the link to the detector which must be positioned at focal plane:<br/>80 LPELinkage linkToDetector = internalCopyOfSystem.GetDetectorLinkage(<br/>81 internalCopyOfSystem.GetDetectorLinkagesBeforeDetectorWithIndex(DetectorIndex)[0]);</pre>                                                                                                                                                        | er) are listed<br>here. |
| 82       83       84       Vector3D focusPosition = internalCopyOfSystem.FocusPositionFinderForDetector(linkToDetector);                                                                                                                                                                                                                                                                                          |                         |
| <pre>85<br/>86 // the focus finder delivers the global position of the focus, we need it expressed with respect<br/>87 // to the transmission coordinate system of the previous element:<br/>88 focusPosition = CoordinateTransformations.TransformAnyPositionVector3DDefinedInAnyOtherCS(<br/>89 focusPosition,<br/>90 per CartesianCoordinateSystem()</pre>                                                     |                         |
| 91<br>92<br>92                                                                                                                                                                                                                                                                                                                                                                                                    | assigned to             |
| 93 // delete internal copy of system:<br>94 internalCopyOfSystem.Dispose();<br>95                                                                                                                                                                                                                                                                                                                                 | parameters              |
| 96 // assign result of focus finder to z coordinate of detector:<br>97 returnValue.Add("DetectorPosition", focusPosition.Z);<br>98                                                                                                                                                                                                                                                                                | e listed here.          |
| 100       // return output:<br>return returnValue;       Note: It is possible to use the Parameter Coupling to enforce         101       #endregion       straightforward constraints through simple formulas. This example<br>is, however, a bit more advanced, and we need to run the Find         102       Freque Position function internally in the Parameter Coupling                                      |                         |

## **Putting the System to Use**

We are going to use a *Parameter Run* to vary the value of the source aperture diameter from 500 µm to 20 mm (the full aperture of the spherical lens).

The Parameter Coupling will remain active throughout and ensure that the detector is always placed at the z position where the RMS deviation of the ray positions is at its smallest (geometric focus).



#### **Effect of Numerical Aperture on Geometric Focus Position**

| We vary the diameter     | er of                           | tor at Focus 02 Variation of aperture diameter*       |            |       |               |                                            |                      |    |
|--------------------------|---------------------------------|-------------------------------------------------------|------------|-------|---------------|--------------------------------------------|----------------------|----|
| the aperture of the      | Results                         |                                                       |            |       |               |                                            |                      |    |
| source in x and y        | Start the parameter run and an  | nalyze its results                                    |            |       |               |                                            |                      |    |
| simultaneously (usir     | ng 🐻 🤶                          |                                                       |            |       |               |                                            |                      |    |
| Standard mode in th      | COLORIZED Already Calculated Re | esults for Next Run                                   |            |       |               |                                            |                      |    |
| Parameter Run)           |                                 |                                                       |            |       |               | Iteration Step                             |                      |    |
| r arameter Runj.         | Detector                        | Subdetector                                           | Combined O | utput | :             | 99 10                                      | 0                    |    |
|                          | Varied Parameters               | Input Field Size X ("Plane Wave" (# 0))               | Data Array |       | 🥒 1 r         | nm 19.805 mr                               | n                    |    |
|                          |                                 | Input Field Size Y ("Plane Wave" (# 0))               | Data Array |       | 11            | nm 19.805 mr                               | n                    |    |
|                          | Coupled Parameters              | Distance Before ("Universal Detector" (# 600)   Basal | Data Array |       | / 71          | nm 21.425 mr                               | n                    |    |
|                          | "Universal Detector" (# 600     |                                                       | Animation  | ~     | 🥒 Pha         | se Positions, Directions & Wavefront Phase | Positions, Directi   |    |
|                          | "Universal Detector" (# 600):   | Center X (Wavelength # 1: 532 nm[1] => Positions)     | Data Array | -     | / 0 r         | 1m 0 mn                                    | n                    |    |
|                          | Lateral Extent via Standard     | Center Y (Wavelength # 1: 532 nm[1] => Positions)     | Data Array | -     | 71            | nm 0 mn                                    | n                    |    |
|                          | Results)                        | Size X (Wavelength # 1:532 nm[1] => Positions)        | Data Array | -     | / 4           | um 745.13 μn                               | n                    |    |
|                          |                                 | Size Y (Wavelength # 1: 532 nm[1] => Positions)       | Data Anay  |       | / 14          | um /45.13 µn                               |                      |    |
| $\mathbf{V}$             |                                 |                                                       |            |       |               | _                                          |                      |    |
| The value of the z       |                                 |                                                       |            |       |               | We included a de                           | etector add-on that  |    |
| coordinate of the        |                                 |                                                       |            |       |               | calculates the sp                          | ot size at the       |    |
| detector is delivered as |                                 |                                                       |            |       |               | dotoctor plana (t                          | brough the standar   | Ь  |
|                          |                                 |                                                       |            |       |               |                                            | nough the standar    | u  |
|                          |                                 |                                                       |            |       | $\rightarrow$ | deviation of ray p                         | positions, equivaler | ١t |
|                          |                                 |                                                       |            |       |               | to PMS in rotatio                          | nally symmetric      |    |
|                          |                                 |                                                       |            |       |               |                                            | many symmetric       |    |
|                          |                                 |                                                       |            |       |               | systems like this                          | one).                |    |
|                          |                                 |                                                       |            |       |               | 5                                          | ,                    |    |

#### **Results**



This graph plots the position along the optical axis of the geometric focal plane measured relative to the last vertex of the spherical lens, where the detector is automatically positioned thanks to the *Parameter Coupling*.

We used the *Coordinate and Interpolation Settings* (in the *Manipulations* tab) to configure the abscissa, and changed the label of the y axis through the *Property Browser*.





This graph plots the spot size diameter calculated as the standard deviation of the ray positions in the dot diagram at the detector plane.

Please note that the position of the detector plane is different for each of the points in this curve, and coincides with the position at which the spot size is minimum for a given value of the aperture diameter of the source.

We once again adjusted the plot using the *Coordinate and Interpolation Settings* and the *Property Browser*.

# **Appendix: Understanding Your Tools**



The focus finder will use the *Ray Results Profile* for its internal calculation, with whatever settings are active at a given point in time.

This means that the number of ray samples configured in the *Ray Results Profile* (either *System 3D* or *Detectors*, whichever one is active) can affect the RMS calculation and consequently also the position selected by the focus finder.

The detector add-on will use whatever profile is selected for its measurement (*Ray Results* or *General*).



See plotted above the standard-deviation spot size as a function of detector position, for different values of ray density. Convergence of the minimum can be observed. The *Parameter Coupling* was deactivated to obtain these results.

## Appendix: The Role of Diffraction (200µm Aperture)

It is well-known (especially in the case of Gaussian beams, for which there is an analytic solution, although it holds true in general) that, in paraxial systems, the presence of diffraction causes a longitudinal shift in the focus position with respect to the geometric prediction.

We have set up an extreme case (aperture  $200 \mu m$ ) to illustrate this with the setup we have been working with throughout this example. The *Parameter Coupling* was deactivated to obtain these results.





Learn more about simulating diffraction here: <u>Free Space Propagation Settings</u>

| title            | Analysis of Focal Plane Position as a Function of Numerical Aperture                                                                                                                                                                                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| document code    | SWF.0040                                                                                                                                                                                                                                                                                                                  |
| document version | 1.1                                                                                                                                                                                                                                                                                                                       |
| software version | 2023.1 (Build 1.556)                                                                                                                                                                                                                                                                                                      |
| software edition | VirtualLab Fusion Basic                                                                                                                                                                                                                                                                                                   |
| category         | Feature Use Case                                                                                                                                                                                                                                                                                                          |
| further reading  | <ul> <li><u>Coupling of Parameters in VirtualLab Fusion</u></li> <li><u>Automatized Detector Positioning with Parameter Coupling</u></li> <li><u>Littrow Configuration for Blazed Gratings</u></li> <li><u>Free Space Propagation Settings</u></li> <li><u>Pinhole Modeling in a Low-Fresnel-Number System</u></li> </ul> |